1. Lipoxins (LX) and aspirin-triggered 15-epi-lipoxins (ATL) exert potent anti-inflammatory actions. In the present study, we determined the anti-inflammatory efficacy of endogenous LXA(4) and LXB(4), the stable ATL analog ATLa2, and a series of novel 3-oxa-ATL analogs (ZK-996, ZK-990, ZK-994, and ZK-142) after intravenous, oral, and topical administration in mice.
View Article and Find Full Text PDFNitric oxide (NO*) at low concentrations is cytoprotective for endothelial cells; however, elevated concentrations of NO* (> or =1 micromol/liter), as may be achieved during inflammatory states, can induce apoptosis and cell death. Hypoxia is associated with tissue inflammation and ischemia and, therefore, may modulate the effects of NO* on endothelial function. To examine the influence of hypoxia on NO*-mediated apoptosis, we exposed bovine aortic endothelial cells (BAEC) to (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate (diethylenetriamine NONOate, DETA-NO) (1 mmol/liter) under normoxic or hypoxic conditions (pO2 = 35 mm of Hg) and measured the indices of apoptotic cell death.
View Article and Find Full Text PDFSignaling pathways instrumental in the temporal and spatial progression of acute inflammation toward resolution are of wide interest. Here a transgenic mouse with myeloid-selective expression of human lipoxin A4 receptor (hALX) was prepared and used to evaluate in vivo the effect of hALX expression. hALX-transfected HEK293 cells transmitted LXA4 signals that inhibit TNFalpha-induced NFkappaB activation.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA, C22:6) is highly enriched in brain, synapses, and retina and is a major omega-3 fatty acid. Deficiencies in this essential fatty acid are reportedly associated with neuronal function, cancer, and inflammation. Here, using new lipidomic analyses employing high performance liquid chromatography coupled with a photodiode-array detector and a tandem mass spectrometer, a novel series of endogenous mediators was identified in blood, leukocytes, brain, and glial cells as 17S-hydroxy-containing docosanoids denoted as docosatrienes (the main bioactive member of the series was 10,17S-docosatriene) and 17S series resolvins.
View Article and Find Full Text PDFAspirin (ASA) is unique among current therapies because it acetylates cyclooxygenase (COX)-2 enabling the biosynthesis of R-containing precursors of endogenous antiinflammatory mediators. Here, we report that lipidomic analysis of exudates obtained in the resolution phase from mice treated with ASA and docosahexaenoic acid (DHA) (C22:6) produce a novel family of bioactive 17R-hydroxy-containing di- and tri-hydroxy-docosanoids termed resolvins. Murine brain treated with aspirin produced endogenous 17R-hydroxydocosahexaenoic acid as did human microglial cells.
View Article and Find Full Text PDF