Tick-borne encephalitis virus (TBEV) is found in Ixodes ricinus ticks throughout the area where viable tick populations exist. In Norway, TBEV is found in I. ricinus from the south coast until Brønnøy municipality in Nordland County and the range of the vector is expanding due to changes in climate, vegetation, host animals and environmental conditions.
View Article and Find Full Text PDFIxodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia.
View Article and Find Full Text PDFFlaviviruses are a threat to public health and can cause major disease outbreaks. Tick-borne encephalitis (TBE) is caused by a flavivirus, and it is one of the most important causes of viral encephalitis in Europe and is on the rise in Sweden. As there is no antiviral treatment available, vaccination remains the best protective measure against TBE.
View Article and Find Full Text PDFBackground: Mosquito-borne viruses pose a serious threat to humans worldwide. There has been an upsurge in the number of mosquito-borne viruses in Europe, mostly belonging to the families Togaviridae, genus Alphavirus (Sindbis, Chikungunya), Flaviviridae (West Nile, Usutu, Dengue), and Peribunyaviridae, genus Orthobunyavirus, California serogroup (Inkoo, Batai, Tahyna). The principal focus of this study was Inkoo (INKV) and Sindbis (SINV) virus circulating in Norway, Sweden, Finland, and some parts of Russia.
View Article and Find Full Text PDFThe objectives of this study were to describe the incidence and genetic diversity of Rotavirus (RV) infection among children up to 3 years of age in a community in Nepal. We investigated community-acquired cases of asymptomatic and symptomatic RV infections in children from birth to 36 months of age in a community-based birth cohort in Bhaktapur, Nepal. Monthly surveillance and diarrheal stool samples were collected from 240 children enrolled at birth, of which 238 completed the 3 years of follow-up.
View Article and Find Full Text PDFTick-borne encephalitis virus (TBEV) is a medically important arbovirus, widespread in Europe and Asia. The virus is primarily transmitted to humans and animals by bites from ticks and, in rare cases, by consumption of unpasteurized dairy products. The aim of this study was to sequence and characterize two TBEV strains with amplicon sequencing by designing overlapping primers.
View Article and Find Full Text PDFThe tick-borne encephalitis virus (TBEV), a zoonotic flaviviral infection, is endemic in large parts of Norway and Eurasia. Humans are mainly infected with TBEV via bites from infected ticks. In Norway, the main geographical distribution of ticks is along the Norwegian coastline from southeast (~59°N) and up to the southern parts of Nordland County (~65°N).
View Article and Find Full Text PDFTick-borne encephalitis virus (TBEV) is a zoonotic pathogen which may cause tick-borne encephalitis (TBE) in humans and animals. More than 10,000 cases of TBE are reported annually in Europe and Asia. However, the knowledge on TBE in animals is limited.
View Article and Find Full Text PDFTick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE). TBEV is one of the most important neurological pathogens transmitted by tick bites in Europe. The objectives of this study were to investigate the seroprevalence of TBE antibodies in cervids in Norway and the possible emergence of new foci, and furthermore to evaluate if cervids can function as sentinel animals for the distribution of TBEV in the country.
View Article and Find Full Text PDFThe heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces intestinal tumours in C57BL/6J-multiple intestinal neoplasia (Min)/+ mice. The main mechanism for PhIP-induced tumour induction in Min/+ mice is loss of the wild-type adenomatous polyposis coli (Apc) allele, i.e.
View Article and Find Full Text PDFThe C57BL/6J-Min/+ (multiple intestinal neoplasia) mouse has a heterozygous nonsense Apc(Min) (adenomatous polyposis coli) mutation, and numerous adenomas spontaneously develop in the intestine. Neonatal exposure of Min/+ mice to the food carcinogens 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (one injection of 50mg/kg) increased the number of small intestinal tumours about three- and two-fold, respectively. The number of colonic tumours was only increased in males.
View Article and Find Full Text PDF