Publications by authors named "Rose Lines"

Seawater contains a wealth of genetic information, representing the biodiversity of numerous species residing within a particular marine habitat. Environmental DNA (eDNA) metabarcoding offers a cost effective, non-destructive method for large scale monitoring of environments, as diverse taxonomic groups are detected using metabarcoding assays. A large-scale eDNA monitoring program of marine vertebrates was conducted across three sampling seasons (Spring 2018, Autumn 2019; Spring 2019) in coastal waters of Brazil.

View Article and Find Full Text PDF

In the face of global biodiversity declines, surveys of beneficial and antagonistic arthropod diversity as well as the ecological services that they provide are increasingly important in both natural and agro-ecosystems. Conventional survey methods used to monitor these communities often require extensive taxonomic expertise and are time-intensive, potentially limiting their application in industries such as agriculture, where arthropods often play a critical role in productivity (e.g.

View Article and Find Full Text PDF

Mesorhizobia are soil bacteria that establish nitrogen-fixing symbioses with various legumes. Novel symbiotic mesorhizobia frequently evolve following horizontal transfer of symbiosis-gene-carrying integrative and conjugative elements (ICESyms) to indigenous mesorhizobia in soils. Evolved symbionts exhibit a wide range in symbiotic effectiveness, with some fixing nitrogen poorly or not at all.

View Article and Find Full Text PDF

Accurate identification of the botanical components of honey can be used to establish its geographical provenance, while also providing insights into honeybee ( L.) diet and foraging preferences. DNA metabarcoding has been demonstrated as a robust method to identify plant species from pollen and pollen-based products, including honey.

View Article and Find Full Text PDF

Metabarcoding of environmental DNA (eDNA) when coupled with high throughput sequencing is revolutionising the way biodiversity can be monitored across a wide range of applications. However, the large number of tools deployed in downstream bioinformatic analyses often places a challenge in configuration and maintenance of a workflow, and consequently limits the research reproducibility. Furthermore, scalability needs to be considered to handle the growing amount of data due to increase in sequence output and the scale of project.

View Article and Find Full Text PDF