Publications by authors named "Rose Kientsch-Engel"

Oxidative and carbonyl stress leads to generation of N(epsilon)-carboxymethyllysine-modified proteins (CML-mps), which are known to bind the receptor for advanced glycation end products (RAGE) and induce nuclear factor (NF)-kappaB-dependent proinflammatory gene expression. To determine the impact of CML-mps in vivo, RAGE-dependent sustained NF-kappaB activation was studied in resection gut specimens from patients with inflammatory bowel disease. Inflamed gut biopsy tissue demonstrated a significant up-regulation of RAGE and increased NF-kappaB activation.

View Article and Find Full Text PDF

Advanced glycation end-products are uremic toxins that accumulate in the serum and tissues of patients with chronic renal failure. Here, we established two enzyme-linked immunosorbent assays (ELISAs) for N(epsilon)-carboxymethyllysine and imidazolone to analyze advanced glycation end-products in human serum. Both ELISAs detected advanced glycation end-products bound to human serum albumin in a dose-dependent way.

View Article and Find Full Text PDF

Sugars and sugar degradation products react in vivo readily with proteins (glycation) resulting in the formation of a heterogeneous group of reaction products, which are called advanced glycation end products (AGEs). AGEs notably change the structure and function of proteins so that extended protein-AGE formation is linked to complications such as nephropathy, atherosclerosis, and cataract. DNA can be glycated in vitro in a similar way as proteins, and the two diastereomers of N(2)-carboxyethyl-2'-deoxyguanosine (CEdG(A,B)) were identified as major DNA AGEs.

View Article and Find Full Text PDF