To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent.
View Article and Find Full Text PDFMutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells.
View Article and Find Full Text PDFSalinity poses a serious threat to global agriculture and human food security. A better understanding of plant adaptation to salt stress is, therefore, mandatory. In the non-photosynthetic cells of the root, salinity perturbs oxidative balance in mitochondria, leading to cell death.
View Article and Find Full Text PDFPhosphorus (P) is an essential macronutrient, playing a role in developmental and metabolic processes in plants. To understand the local and systemic responses of sorghum to inorganic phosphorus (P) starvation and the potential of straw and ash for reutilisation in agriculture, we compared two grain (Razinieh) and sweet (Della) sorghum varieties with respect to their morpho-physiological and molecular responses. We found that P starvation increased the elongation of primary roots, the formation of lateral roots, and the accumulation of anthocyanin.
View Article and Find Full Text PDFSalinity is a serious challenge to global agriculture and threatens human food security. Plant cells can respond to salt stress either by activation of adaptive responses, or by programmed cell death. The mechanisms deciding the respective response are far from understood, but seem to depend on the degree, to which mitochondria can maintain oxidative homeostasis.
View Article and Find Full Text PDF