In this paper, authors present a novel architecture for controlling an industrial robot via Brain Computer Interface. The robot used is a Series 2000 KR 210-2. The robotic arm was fitted with DI drawing devices that clamp, hold and manipulate various artistic media like brushes, pencils, pens.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2018
This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to the biofeedback factor , based on users' attention, intention, and focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of eight subjects: four ALS patients in a near locked-in status with normal ocular movement and four healthy control subjects enrolled for age, education, and computer expertise.
View Article and Find Full Text PDFLocked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control.
View Article and Find Full Text PDF