Publications by authors named "Rosario R Riso"

Separation of the two mirror images of a chiral molecule, the enantiomers, is a historically complicated problem of major relevance for biological systems. Since chiral molecules are optically active, it has been speculated that strong coupling to circularly polarized fields may be used as a general procedure to unlock enantiospecific reactions. In this work, we focus on how chiral cavities can be used to drive asymmetry in the photochemistry of chiral molecular systems.

View Article and Find Full Text PDF

A comprehensive understanding of electron-photon correlation is essential for describing the reshaping of molecular orbitals in quantum electrodynamics (QED) environments. The strong coupling QED Hartree-Fock (SC-QED-HF) theory tackles these aspects by providing consistent molecular orbitals in the strong coupling regime. The previous implementation, however, has significant convergence issues that limit the applicability.

View Article and Find Full Text PDF

The development of new methodologies for the selective synthesis of individual enantiomers is still one of the major challenges in synthetic chemistry. Many biomolecules, and also many pharmaceutical compounds, are indeed chiral. While the use of chiral reactants or catalysts has led to substantial progress in the field of asymmetric synthesis, a systematic approach applicable to general reactions has still not been proposed.

View Article and Find Full Text PDF

Strong coupling between molecules and quantized fields has emerged as an effective methodology to engineer molecular properties. New hybrid states are formed when molecules interact with quantized fields. Since the properties of these states can be modulated by fine-tuning the field features, an exciting and new side of chemistry can be explored.

View Article and Find Full Text PDF

The ionization of molecular systems is important in many chemical processes, such as electron transfer and hot electron injection. Strong coupling between molecules and quantized fields (e.g.

View Article and Find Full Text PDF

Coupling between molecules and vacuum photon fields inside an optical cavity has proven to be an effective way to engineer molecular properties, in particular reactivity. To ease the rationalization of cavity induced effects we introduce an ab initio method leading to the first fully consistent molecular orbital theory for quantum electrodynamics environments. Our framework is non-perturbative and explains modifications of the electronic structure due to the interaction with the photon field.

View Article and Find Full Text PDF

The fully polarizable Quantum Mechanics/Molecular Mechanics (QM/MM) approach based on fluctuating charges and fluctuating dipoles, named QM/FQFμ [T. Giovannini et al., J.

View Article and Find Full Text PDF