The discovery that a considerable portion of eukaryotic genomes is transcribed and gives rise to long noncoding RNAs (lncRNAs) provides an important new perspective on the transcriptome and raises questions about the centrality of these lncRNAs in gene-regulatory processes and diseases. The rapidly increasing number of mechanistically investigated lncRNAs has provided evidence for distinct functional classes, such as enhancer-like lncRNAs, which modulate gene expression via chromatin looping, and noncoding competing endogenous RNAs (ceRNAs), which act as microRNA decoys. Despite great progress in the last years, the majority of lncRNAs are functionally uncharacterized and their implication for disease biogenesis and progression is unknown.
View Article and Find Full Text PDFGene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism.
View Article and Find Full Text PDFBackground: High-throughput gene expression data can predict gene function through the "guilt by association" principle: coexpressed genes are likely to be functionally associated.
Methodology/principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles.
Background: Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates.
View Article and Find Full Text PDF