X-ray radiation treatments are largely adopted in radiotherapy, and Fourier-transform infrared microspectroscopy (μ-FTIR) has already been demonstrated to be a useful instrument for monitoring radiotherapy effects. Previous works in this field have focused on studying the changes occurring in cells when they are fixed immediately after the irradiation or 24 and 48 h later. In the present paper, changes occurring in SH-SY5Y neuroblastoma cells in the first hours after the irradiation are examined to obtain information on the processes taking place in this not-yet-investigated time window by using μ-FTIR.
View Article and Find Full Text PDFMeasuring the carbon stable isotope ratio (C/C, expressed as δC) in geogenic CO fluids is a crucial geochemical tool for studying Earth's degassing. Carbon stable isotope analysis is traditionally performed by bulk mass spectrometry. Although Raman spectroscopy distinguishes CO and CO isotopologue bands in spectra, using this technique to determine CO isotopic signature has been challenging.
View Article and Find Full Text PDFFramed within the evolutionary framework, the Interpersonal Motivational System (IMS) theory suggests that eight distinct motivational impulses drive interpersonal human relationships, namely caregiving, social affiliation, attachment, rank-dominance, rank-submission, social play, cooperation, and sexuality. This theory has been widely applied in clinical practice, where psychopathology is viewed as the result of non-flexible or excessive activation of one system over another. Despite its clinical relevance, empirical studies aimed at measuring IMSs are scarce.
View Article and Find Full Text PDFOptical properties of flavin adenine dinucleotide (FAD) moiety are widely used nowadays for biotechnological applications. Given the fundamental role played by FAD, additional structural information about this enzymatic cofactor can be extremely useful in order to obtain a greater insight into its functional role in proteins. For this purpose, we have investigated FAD behaviour in aqueous solutions at different pH values by a novel approach based on the combined use of time-resolved fluorescence and circular dichroism spectroscopies.
View Article and Find Full Text PDFAtactic polystyrene, as reported in a recent contribution by our group, displays a marked change in glass transition when exposed to toluene vapor due to plasticization associated with vapor sorption within the polymer. The dependence of the glass transition temperature of the polymer-penetrant mixture on the pressure of toluene vapor is characterized by the so-called "retrograde vitrification" phenomenon, in that, at a constant pressure, a rubber to glass transition occurs by increasing the temperature. In this contribution, we have used a theoretical approach, based on the nonrandom lattice fluid thermodynamic model for the polymer-toluene mixture, to predict the state of this system, i.
View Article and Find Full Text PDFA method is presented for recovering the intensity depth profile, by confocal optical microscopy, in transparent and amorphous samples with low scattering. The response function of a confocal Raman microscope has been determined by using the second Rayleigh-Sommerfeld diffraction integral and scalar wave optics within paraxial approximation, taking into account the refractive index mismatch between the sample and the medium surrounding the objective lens. An iterative multi-fitting-scheme, based on the conjugate gradient method and Brent algorithm, allowed to fit several depth profile curves simultaneously and retrieve the beam waist, the signal amplitude and the position of the sample surface.
View Article and Find Full Text PDFA new algorithm based on the Maximum Entropy Method (MEM) is proposed for recovering both the lifetime distribution and the zero-time shift from time-resolved fluorescence decay intensities. The developed algorithm allows the analysis of complex time decays through an iterative scheme based on entropy maximization and the Brent method to determine the minimum of the reduced chi-squared value as a function of the zero-time shift. The accuracy of this algorithm has been assessed through comparisons with simulated fluorescence decays both of multi-exponential and broad lifetime distributions for different values of the zero-time shift.
View Article and Find Full Text PDFWe have developed a theoretical model for photon migration through scattering media in the presence of an absorbing inhomogeneity. A closed-form solution for the average diffuse intensity has been obtained through an iterative approximation scheme of the steady-state diffusion equation. The model describes absorbing defects in a wide range of values.
View Article and Find Full Text PDFRationale: The aim of this study was to demonstrate, and to characterize by high-resolution mass spectrometry that it is possible to preferentially induce covalent cross-links in peptides by using high-energy femtosecond ultraviolet (UV) laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence.
Methods: Three peptides, xenopsin, angiotensin I, and interleukin, individually or in combination, were exposed to high-energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry.
Photonic immobilization technique (PIT) has been used to develop an immunosensor for the detection of parathion. An antibody solution has been activated by breaking the disulfide bridge in the triad Trp/Cys-Cys through absorption of ultrashort UV laser pulses. The free thiol groups so produced interact with gold lamina making the antibody oriented upside, that is, with its variable parts exposed to the environment, thereby greatly increasing the detection efficiency.
View Article and Find Full Text PDFTime-resolved fluorescence experiments have shown that flavin adenine dinucleotide (FAD) fluorescence emission of sol-gel immobilized glucose oxidase (GOD) exhibits a three-exponential decaying behaviour characterized by long- (about 2.0-3.0 ns), intermediate- (about 300 ps) and short- (less than 10 ps) lifetime, each one being characteristic of a peculiar conformational state of the FAD structure.
View Article and Find Full Text PDFA new algorithm for the Maximum Entropy Method (MEM) is proposed for recovering the lifetime distribution in time-resolved fluorescence decays. The procedure is based on seeking the distribution that maximizes the Skilling entropy function subjected to the chi-squared constraint χ(2) ~ 1 through iterative linear approximations, LU decomposition of the Hessian matrix of the lagrangian problem and the Golden Section Search for backtracking. The accuracy of this algorithm has been investigated through comparisons with simulated fluorescence decays both of narrow and broad lifetime distributions.
View Article and Find Full Text PDFA monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients.
View Article and Find Full Text PDFUltrashort UV pulses at 258 nm with repetition rate of 10 kHz have been used to irradiate buffer solution of antibody. The tryptophan residues strongly absorb this radiation thus becoming capable to disrupt the disulfide bridges located next to them. Due to their high reactivity the opened bridges can anchor a gold plate more efficiently than other sites of the macromolecule giving rise to preferential orientations of the variable part of the antibody.
View Article and Find Full Text PDFWe propose a new experimental scheme to produce clean isolated pulses lasting a few hundreds of attoseconds. It is based on high harmonics generation and uses the polarization gating technique combined with the ionization dynamics and the spatial filtering provided by the three-dimensional field propagation. The proposed method is easy to implement, robust against laser parameter fluctuations, and shows to be effective up to a 25 fs pulse duration.
View Article and Find Full Text PDFIn this study we have theoretically and experimentally investigated the behavior of first order approximation contrast function when purely scattering inhomogeneities located at different depths inside a turbid thick slab are considered. Results of model predictions have been compared with Finite element method simulations and tested on phantoms. To this aim, we have developed for the first time to our knowledge a fitting algorithm for estimating both the scattering perturbation parameter and the shift of the inhomogeneity from the middle plane, allowing one to reduce the uncertainties due to depth.
View Article and Find Full Text PDFChanges in steady-state UV fluorescence emission from free or immobilizedglucose oxidase have been investigated as a function of glucose concentration.Immobilized GOD has been obtained by entrapment into a gelatine membrane. Changes insteady-state UV fluorescence have been quantitatively characterized by means ofoptokinetic parameters and their values have been compared with those previouslyobtained for FAD fluorescence in the visible range.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2006
In the framework of the perturbation approach to the diffusion equation, an analytical expression is derived to describe the effects on the time-resolved transmittance due to the presence of a spatially varying scattering inclusion hidden inside a diffusive slab. This formula assumes that the reduced scattering coefficient of the inclusion is spatially Gaussian distributed and complements that obtained for the absorptive case. The accuracy and the application range of the perturbed transmittance are investigated through comparisons with the numerical solutions of the time-dependent diffusion equation given by using the finite-element method.
View Article and Find Full Text PDF