The carbonaceous asteroid Ryugu has been explored by the Hayabusa2 spacecraft to elucidate the actual nature of hydrous asteroids. Laboratory analyses revealed that the samples from Ryugu are comparable to unheated CI carbonaceous chondrites; however, reflectance spectra of Ryugu samples and CIs do not coincide. Here, we demonstrate that Ryugu sample spectra are reproduced by heating Orgueil CI chondrite at 300°C under reducing conditions, which caused dehydration of terrestrial weathering products and reduction of iron in phyllosilicates.
View Article and Find Full Text PDFMicrOmega, a miniaturized near-infrared hyperspectral microscope, has been selected to characterize in the laboratory the samples returned from Ryugu by the Hayabusa2 mission. MicrOmega has been delivered to the Extraterrestrial Samples Curation Center of the Japanese Aerospace eXploration Agency at the Institute of Space and Astronautical Science in July 2020 and then mounted and calibrated to be ready for the analyses of the samples returned to Earth on December 6, 2020. MicrOmega was designed to analyze the returned samples within a field of view of 5 × 5 mm and a spatial sampling of 22.
View Article and Find Full Text PDFRyugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body.
View Article and Find Full Text PDFThis study is a multi-technique investigation of the Paris carbonaceous chondrite directly applied on two selected 500 × 500 µm² areas of a millimetric fragment, without any chemical extraction. By mapping the partial hydration of the amorphous silicate phase dominating the meteorite sample matrix, infrared spectroscopy gave an interesting glimpse into the way the fluid may have circulated into the sample and partially altered it. The TOF-SIMS in-situ analysis allowed the studying and mapping of the wide diversity of chemical moieties composing the meteorite organic content.
View Article and Find Full Text PDFA fully automated method for the determination of six phthalates in environmental water samples is described. It is based in the novel sample preparation concept of in-syringe dispersive liquid-liquid microextraction, coupled as a front end to GC-MS, enabling the integration of the extraction steps and sample injection in an instrumental setup that is easy to operate. Dispersion was achieved by aspiration of the organic (extractant and disperser) and the aqueous phase into the syringe very rapidly.
View Article and Find Full Text PDFColumn-switching high-performance liquid chromatographic (HPLC) method has been developed and validated for quantification of losartan, telmisartan, and valsartan in human urine. Urine samples were diluted on the extraction mobile phase (1:4, v/v) and a volume of 20 microL of this mixture were directly injected onto the HPLC system. The analytes were extracted from the matrix using an on-line solid-phase extraction procedure involving a precolumn packed with 25 microm C(18) alkyl-diol support (ADS), and a solution 2% methanol in 5mM phosphate buffer (pH 3.
View Article and Find Full Text PDFThe sequential injection (SIA) technique was applied for the on-line preparation of an "oil in water" microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.
View Article and Find Full Text PDFIn this work, the coupling between flow analysis (FA)-vapor phase generation (VPG) and Fourier transform infrared spectrometry (FTIR) has been proposed as a novel and alternative strategy for the determination of nitrite. The analyte was transformed into the gaseous nitric oxide (NO) by on-line reaction with potassium iodide (KI) or ascorbic acid in acidic medium. The gaseous NO generated was transported by means of a N(2) gas carrier stream inside the IR gas cell and the corresponding FTIR spectrum was acquired in a continuous mode.
View Article and Find Full Text PDFAn "oil in water" formulation was optimized to determine chromium in heavy crude oil (HCO) and bitumen-in-water emulsion (Orimulsion-400(R)) samples by transversally heated electrothermal atomic absorption spectrometry (TH-ET AAS) using Zeeman effect background correction. The optimum proportion of the oil-water mixture ratio was 7:3 v/v (70 ml of oil as the internal phase) with a non-ionic surfactant concentration (Intan-100) in the emulsion of 0.2% w/w.
View Article and Find Full Text PDFA column-switching high-performance liquid chromatographic method with UV detection for the determination of cocaine (COC) and benzoylecgonine (BZE) in human blood plasma samples is described. The method uses an alkyl-diol-silica ADS-C18 extraction precolumn. A 50- micro L plasma sample was introduced to the ADS precolumn in order to separate the analytes from proteins and endogenous compounds.
View Article and Find Full Text PDFThe combination of flow analysis (FA), hydride generation (HG) and Fourier transform infrared (FTIR) spectrometry is proposed as a novel and powerful analytical technique for the individual and simultaneous determination of antimony, arsenic and tin in aqueous samples. The analytes were transformed into the volatile hydride form by on-line reaction with sodium tetrahydroborate in acidic medium. The gaseous analyte hydrides [M(n)H(m), (g)] generated, were transported by means of a carrier gas stream inside the IR gas cell and the corresponding FTIR spectrum was acquired in a continuous mode.
View Article and Find Full Text PDF