Sea turtle hatching success can be affected by many variables, including pathogenic microbes, but it is unclear which microbes are most impactful and how they are transmitted into the eggs. This study characterized and compared the bacterial communities from the (i) cloaca of nesting sea turtles (ii) sand within and surrounding the nests; and (iii) hatched and unhatched eggshells from loggerhead (Caretta caretta) and green (Chelonia mydas) turtles. High throughput sequencing of bacterial 16S ribosomal RNA gene V4 region amplicons was performed on samples collected from 27 total nests in Fort Lauderdale and Hillsboro beaches in southeast Florida, United States.
View Article and Find Full Text PDFAnimal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented.
View Article and Find Full Text PDFThe deep sea is the world's largest ecosystem, with high levels of biodiversity and many species that exhibit life-history characteristics that make them vulnerable to high levels of exploitation. Many fisheries in the deep sea have a track record of being unsustainable. In the northeast Atlantic, there has been a decline in the abundance of commercial fish species since deep-sea fishing commenced in the 1970s.
View Article and Find Full Text PDFWe present the first remotely operated vehicle investigation of megabenthic communities (1004-1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3-14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40-56%).
View Article and Find Full Text PDF