Publications by authors named "Rosanna Ciriello"

L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson's symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds.

View Article and Find Full Text PDF

L-Dopa, a bioactive compound naturally occurring in some Leguminosae plants, is the most effective symptomatic drug treatment for Parkinson's disease. During disease progression, fluctuations in L-DOPA plasma levels occur, causing motor complications. Sensing devices capable of rapidly monitoring drug levels would allow adjusting L-Dopa dosing, improving therapeutic outcomes.

View Article and Find Full Text PDF

An analytical method based on ultrasound assisted extraction (UAE) and liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI/MS/MS) was validated and applied for determining L-dopa in four ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris L.), marked with the European label PGI (Protected Geographical Indication). The selectivity of the proposed method was ensured by the specific fragmentation of the analyte.

View Article and Find Full Text PDF

L-Dopa (LD), a substance used medically in the treatment of Parkinson's disease, is found in several natural products, such as L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results.

View Article and Find Full Text PDF

The chemical composition of wine samples comprises numerous bioactive compounds responsible for unique flavor and health-promoting properties. Thus, it's important to have a complete overview of the metabolic profile of new wine products in order to obtain peculiar information in terms of their phytochemical composition, quality, and traceability. To achieve this aim, in this work, a mass spectrometry-based phytochemical screening was performed on seven new wine products from Villa D'Agri in the Basilicata region (Italy), i.

View Article and Find Full Text PDF

Choline (Ch) and phosphocholine (PCh) levels in tissues are associated to tissue growth and so to carcinogenesis. Till now, only highly sophisticated and expensive techniques like those based on NMR spectroscopy or GC/LC- high resolution mass spectrometry permitted Ch and PCh analysis but very few of them were capable of a simultaneous determination of these analytes. Thus, a never reported before amperometric biosensor for PCh analysis based on choline oxidase and alkaline phosphatase co-immobilized onto a Pt electrode by co-crosslinking has been developed.

View Article and Find Full Text PDF

Chronic wounds result from the failure of the normal wound healing process. Any delay during the tissue repair process could be defined as chronic wound healing, potentially having a highly detrimental impact on human health. To face this problem, in the last years, the use of different technologies alternative to therapeutic agents is gaining more attention.

View Article and Find Full Text PDF

The present study describes the kinetics of L-lysine-α-oxidase (LO) from immobilised by co-crosslinking onto the surface of a Pt electrode. The resulting amperometric biosensor was able to analyse L-lysine, thus permitting a simple but thorough study of the kinetics of the immobilised enzyme. The kinetic study evidenced that LO behaves in an allosteric fashion and that cooperativity is strongly pH-dependent.

View Article and Find Full Text PDF

Nitrate and nitrite as sodium or potassium salts are usually added to meat products to develop the characteristic flavor, to inhibit the growth of microorganisms (particularly ), and effectively control rancidity by inhibiting lipid oxidation. However, both nitrate and nitrite ions need to be monitored for ensuring the quality and safety of cured meats. In this work, for the first time the content of nitrite and nitrate ions in homogenized meat samples of baby foods was determined by a validated method based on ion chromatography (IC) coupled with conductivity detection.

View Article and Find Full Text PDF

Interest in targeted profiling of quercetin glycoconjugates occurring in edible foodstuffs continues to expand because of their recognized beneficial health effects. Quercetin derivatives encompass several thousands of chemically distinguishable compounds, among which there are several compounds with different glycosylations and acylations. Since reference standards and dedicated databases are not available, the mass spectrometric identification of quercetin glycoconjugates is challenging.

View Article and Find Full Text PDF

A novel electrochemical method to assay phospholipase D (PLD) activity is proposed based on the employment of a choline biosensor realized by immobilizing choline oxidase through co-crosslinking on an overoxidized polypyrrole film previously deposited on a platinum electrode. To perform the assay, an aliquot of a PLD standard solution is typically added to borate buffer containing phosphatidylcholine at a certain concentration and the oxidation current of hydrogen peroxide is then measured at the rotating modified electrode by applying a detection potential of + 0.7 V vs.

View Article and Find Full Text PDF

A new and highly selective amperometric biosensor able to analyse choline in clinical samples from patients suffering from renal diseases and receiving repetitive haemodialysis treatment is described. The proposed biosensor is based on choline oxidase immobilized by co-crosslinking onto a novel anti-fouling and anti-interferent membrane. Between the several polymeric films electrosynthesized on a Pt electrode whose permselective behaviours were here investigated, those based on overoxidized polypyrrole/poly(o-aminophenol) bilayer revealed the most effective in rejecting common interferents usually present in biological fluids.

View Article and Find Full Text PDF

An amperometric biosensor based on an l-lysine-α-oxidase (LO) layer immobilized by co-crosslinking onto the surface of an overoxidized polypyrrole modified Pt electrode (Pt/oPPy) and able to analyse l-lysine (Lys) in untreated human serum is described. The sensing electrode has been characterised and a proper enzyme kinetics optimisation permits to use a low specific enzyme as LO from Trichoderma viride for the selective biorecognition of Lys in the presence of other interferent amino acids; a kinetics study of LO evidenced also the allosteric behaviour of this enzyme, a kinetic feature which was never reported before for this enzyme. The biosensor showed a sensitivity of 0.

View Article and Find Full Text PDF

This investigation was undertaken to explore the mutual recognition of the pentapeptide (ValGlyGlyValGly), a hydrophobic elastin-like peptide (ELP), suspended in deionized water in monomer (n = 1) and trimer (n = 3) forms and the outer surface of a very thin, insulating polymer, poly(ortho-aminophenol) (PoAP), electrochemically grown on a platinum foil by cyclic voltammetry in a neutral medium (phosphate-buffered saline, I = 0.1M) immersed in the suspension. As a prior task, the proved propensity of the ValGlyGlyValGly sequence, at the given minimal length (three or more repeats), to self-assemble into amyloid-like fibrils when solubilized in an aqueous environment was considered within the framework of testing PoAP surfaces for the specific detection of amyloid precursors.

View Article and Find Full Text PDF

Based on choline oxidase immobilized by co-crosslinking on an overoxidised polypyrrole modified platinum electrode, a novel electrochemical assay for cholinesterase activity in human serum was developed. The assay was performed by adding an aliquot of cholinesterase standard solution or serum sample to phosphate buffer containing choline or thiocholine ester and measuring the oxidation current of hydrogen peroxide at the rotating modified electrode polarized at +0.7 V vs.

View Article and Find Full Text PDF

The electrochemical oxidation of ortho-aminophenol (oAP) by cyclic voltammetry (CV), on platinum substrates in neutral solution, produces a polymeric film (PoAP) that grows to a limiting thickness of about 10 nm. The insulating film has potential use as a bioimmobilizing substrate, with its specificity depending on the orientation of its molecular chains. Prior investigations suggest that the film consists of alternating quinoneimine and oAP units, progressively filling all the platinum sites during the electrosynthesis.

View Article and Find Full Text PDF

A novel capillary zone electrophoresis (CZE) method was developed for an improved separation and size characterization of pristine gold nanoparticles (AuNP) using uncoated fused-silica capillaries with UV-Vis detection at 520 nm. To avoid colloid aggregation and/or adsorption during runs, poly(sodium 4-styrenesulfonate) (PSS) was added (1%, w/v) in the running buffer (CAPS 10 mM, pH 11). This polyelectrolyte conferred an enhanced stabilization to AuNP, both steric and electrostatic, exalting at the same time their differences in electrophoretic mobility.

View Article and Find Full Text PDF

The aim of this study was a reliable intra-species discrimination and strain biodiversity in Oenococcus oeni populations of two different Aglianico wineries by molecular, biochemical, and physiological characterization. Pulsed field gel electrophoresis (PFGE) analysis revealed a high polymorphism related to the origin (winery) of strains, while differential display PCR (DD-PCR) allowed a further discrimination of strains from the same winery. Moreover, the heterogeneity of these natural populations was investigated by capillary electrophoresis and enzymatic assays.

View Article and Find Full Text PDF

Lysine quantification in cheese by a novel, highly selective amperometric biosensor is reported. Based on l-lysine-α-oxidase immobilized by co-crosslinking onto Platinum (Pt) electrodes modified by overoxidized polypyrrole, the sensor proved almost specific to lysine, sensitive and stable. The pure enzymatic nature of current signals was confirmed by a control electrode modified without enzyme.

View Article and Find Full Text PDF

An amperometric biosensor for the determination of L-lysine based on L-lysine-α-oxidase immobilized by co-crosslinking on a platinum electrode previously modified by an overoxidized polypyrrole film is described. The optimization of experimental parameters, such as pH and flow rate, permitted to minimize significantly substrate interferences even using a low specific, commercial enzyme. The relevant biases introduced in the measurement of lysine were just about 1% for L-arginine, L-histidine and L-ornithine, roughly 4% for L-phenylalanine and L-tyrosine.

View Article and Find Full Text PDF

Non-conducting polymeric films synthesised by the electrooxidation of o-aminophenol on a platinum electrode in acetate or phosphate buffer displayed an interesting permselective behaviour, which proved valuable in minimising the electrochemical interferences from ascorbate, acetaminophen, cysteine and urate sample molecules in amperometric detection mode. The electrosynthesis of poly(o-aminophenol) (p(oAP)) film showed also useful as permselective membrane for enzyme immobilization as demonstrated by the production of an interference-free glucose oxidase biosensor. In this respect, the glucose response time, t(0.

View Article and Find Full Text PDF

Advanced biosensors are frequently based on electrosynthesized polymeric films. In this context, the electrosynthesis mechanism underlying the electrochemical oxidation of 2-naphthol (2-NAP) in phosphate buffer at pH 7 on Pt electrodes has been investigated. The voltammetric behaviour suggested the formation of a non-conducting polymer (poly(2-NAP)) through an irreversible electrochemical process complicated by 2-NAP adsorption and fast electrode passivation.

View Article and Find Full Text PDF

A simple and effective chromatographic method with suppressed conductivity detection was developed and validated to determine dissolved samples of octadecyltrimethylammonium bromide (C18H37N+ Me3Br-, ODTAB) for purity testing. A response surface methodology generated with a Doehlert matrix design was applied to optimize the chromatographic and detection conditions in ion-exchange chromatography (IEC) with conductivity detection in the chemical suppression mode. A three-factor Doehlert design was performed to fit a second-order model and jointly optimize the peak intensity and shorten analysis time through a global desirability function.

View Article and Find Full Text PDF

The application of activated pulsed amperometric detection (APAD) for the determination of orotic acid (OrA) in real samples at a gold working electrode in alkaline solutions, in combination with anion-exchange chromatography, is reported. Such an activated potential waveform was designed with an initial step that involves the formation of redox active species (e.g.

View Article and Find Full Text PDF

The electrochemical (EC) detection of iodide at gold, silver and platinum electrodes under similar experimental conditions was evaluated. To achieve optimal amperometric detection, the electrode sensitivity, selectivity, and stability was compared. Isocratic separation of iodide was attained by ion chromatography (IC) using an anion-exchange column with nitrate as an eluent ion (25 mM HNO(3) + 50 mM NaNO(3)).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj1a8v3gkvepv5ucboace503iiqnbf05m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once