Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein.
View Article and Find Full Text PDFIn higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature.
View Article and Find Full Text PDFBackground: The HER-2 receptor undergoes a proteolytic cleavage generating an NH(2)-terminally truncated fragment, p95HER-2, that is membrane-associated and tyrosine-phosphorylated. We have reported that p95HER-2, but not the full-length receptor, p185HER-2, correlated with the extent of lymph node involvement in patients with breast cancer and its expression was significantly enhanced in nodal metastatic tissue. These facts suggested an important role for p95HER-2 either as a marker or cause of metastasis and poor outcome in breast cancer.
View Article and Find Full Text PDFThe impact of the genomic imbalances on the clinical outcome of 34 patients with lymph-node positive high-risk breast cancer (HRBC) was investigated using comparative genomic hybridization. All of the patients were uniformly treated with high-dose chemotherapy and autologous stem cell transplantation. The average number of chromosomal imbalances per tumor was 11 (range, 2-24), including DNA overrepresentation on chromosomes 1q (59%), 17q (38%), 8q and 16p (35% each), 20q (32%), and 19p (26%), and genomic losses involving 9p and 18q (41%), 8p, 11q, and 18p (38%), 17p (32%), 4p and Xq (29%), and 16q (26%).
View Article and Find Full Text PDFBackground: The full-length receptor p185HER-2 undergoes a metalloprotease-dependent cleavage producing a membrane-associated fragment (p95HER-2) in cultured breast cancer cells. P95HER-2 has potentially enhanced signaling activity, but its expression and role in human breast cancer is poorly characterized.
Purpose: The purpose of this project was to characterize the expression of p95HER-2 in primary breast cancers and nodal metastasis, and to study association with clinicopathological factors.