Publications by authors named "Rosana F Vazoller"

Article Synopsis
  • * Adsorption was the main PCP removal mechanism, showing high efficiency (86-104%) at various concentrations, while biodegradation produced toxic intermediates, with significant bacterial community impacts noted.
  • * Indigenous inoculum from the Santos-São Vicente estuary and polyurethane foam were effective in enhancing both the adsorption process and the overall PCP removal, without inhibiting microbial activity.
View Article and Find Full Text PDF

The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30+/-1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24h of hydraulic retention time. The PCP concentrations, which ranged from 2.

View Article and Find Full Text PDF

Legionella species are ubiquitous bacteria in aquatic environments. To examine the effect of anthropogenic impacts and physicochemical characteristics on the Legionellaceae population, we collected water from two sites in the Itanhaém River system in the Atlantic Forest of Brazil. One sample was collected from an upstream pristine region, the other from a downstream estuarine region moderately affected by untreated domestic sewage.

View Article and Find Full Text PDF

Wastewater samples from an anaerobic reactor were extracted with hexane and derivatized with diazomethane (method 1) and with acetic anidride (method 2). Gas chromatography with electron-capture detection (ECD) was employed for separating the parent compound and intermediates trichlorophenols (TCP) and dichlorophenols (DCP) which originated from the penta chlorophenol (PCP) degradation process. The relations between concentrations of PCP, TCP and DCP areas were linear in the range of concentrations of 0.

View Article and Find Full Text PDF

We present a fast procedure for scanning electron microscopy (SEM) analysis in which hexamethyldisilazane (HMDS) solvent, instead of the critical point drying, is used to remove liquids from a microbiological specimen. The results indicate that the HMDS solvent is suitable for drying samples of anaerobic cells for examination by SEM and does not cause cell structure disruption.

View Article and Find Full Text PDF