Publications by authors named "Rosana Compton"

Tillering and secondary branching are two plastic traits with high agronomic importance, especially in terms of the ability of plants to adapt to changing environments. We describe a quantitative trait analysis of tillering and secondary branching in two novel BC1F2 populations totaling 246 genotypes derived from backcrossing two Sorghum bicolor x S. halepense F1 plants to a tetraploidized S.

View Article and Find Full Text PDF

Comparing populations derived, respectively, from polyploid Sorghum halepense and its progenitors improved knowledge of plant architecture and showed that S. halepense harbors genetic novelty of potential value for sorghum improvement Vegetative growth and the timing of the vegetative-to-reproductive transition are critical to a plant's fitness, directly and indirectly determining when and how a plant lives, grows and reproduces. We describe quantitative trait analysis of plant height and flowering time in the naturally occurring tetraploid Sorghum halepense, using two novel BCF populations totaling 246 genotypes derived from backcrossing two tetraploid Sorghum bicolor x S.

View Article and Find Full Text PDF

Despite a "ploidy barrier," interspecific crosses to wild and/or cultivated sorghum (, 2n = 2x = 20) may have aided the spread across six continents of , also exemplifying risks of "transgene escape" from crops that could make weeds more difficult to control. Genetic maps of two BCF populations derived from crosses of (sorghum) and with totals of 722 and 795 single nucleotide polymorphism (SNP) markers span 37 and 35 linkage groups, with 2-6 for each of the 10 basic sorghum chromosomes due to fragments covering different chromosomal portions or independent segregation from different homologs. Segregation distortion favored alleles on chromosomes 2 (1.

View Article and Find Full Text PDF

We describe a genetic map with a total of 381 bins of 616 genotyping by sequencing (GBS)-based SNP markers in a F-F recombinant inbred line (RIL) population of 393 individuals derived from crossing BTx623 to IS3620C, a guinea line substantially diverged from BTx623. Five segregation distorted regions were found with four showing enrichment for alleles, suggesting possible selection during formation of this RIL population. A quantitative trait locus (QTL) study with this number of individuals, tripled relative to prior studies of this cross, provided resources, validated previous findings, and demonstrated improved power to detect plant height and flowering time related QTL relative to other published studies.

View Article and Find Full Text PDF

Johnsongrass (Sorghum halepense) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima's D, Fu's F and Bayesian clusterings of population structure.

View Article and Find Full Text PDF

Seed size is closely related to fitness of wild plants, and its modification has been a key recurring element in domestication of seed/grain crops. In sorghum, a genomic and morphological model for panicoid cereals, a rich history of research into the genetics of seed size is reflected by a total of 13 likelihood intervals determined by conventional QTL (linkage) mapping in 11 nonoverlapping regions of the genome. To complement QTL data and investigate whether the discovery of seed size QTL is approaching "saturation," we compared QTL data to GWAS for seed mass, seed length, and seed width studied in 354 accessions from a sorghum association panel (SAP) that have been genotyped at 265,487 SNPs.

View Article and Find Full Text PDF

Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens.

View Article and Find Full Text PDF

BAC-end sequences (BESs) of hybrid sugarcane cultivar R570 are presented. A total of 66,990 informative BESs were obtained from 43,874 BAC clones. Similarity search using a variety of public databases revealed that 13.

View Article and Find Full Text PDF

• Plant genomes contain numerous disease resistance genes (R genes) that play roles in defense against pathogens. Scarcity of genetic polymorphism makes peanut (Arachis hypogaea) especially vulnerable to a wide variety of pathogens. • Here, we isolated and characterized peanut bacterial artificial chromosomes (BACs) containing a high density of R genes.

View Article and Find Full Text PDF

Genetic mapping studies have suggested that diploid cotton (Gossypium) might be an ancient polyploid. However, further evidence is lacking due to the complexity of the genome and the lack of sequence resources. Here, we used the grape (Vitis vinifera) genome as an out-group in two different approaches to further explore evidence regarding ancient genome duplication (WGD) event(s) in the diploid Gossypium lineage and its (their) effects: a genome-level alignment analysis and a local-level sequence component analysis.

View Article and Find Full Text PDF

Background: Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago.

View Article and Find Full Text PDF