The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit.
View Article and Find Full Text PDFThe GTPase Ran plays a crucial role in nucleo-cytoplasmic transport of tumor suppressors, proto-oncogenes, signaling molecules and transcription factors. It also plays direct roles in mitosis, through which it regulates faithful chromosome segregation and hence the generation of genetically stable cells. Ran operates through a group of effector proteins.
View Article and Find Full Text PDFThe GTPase RAN has an established role in spindle assembly and in mitotic progression, although not all mechanisms are fully understood in somatic cells. Here, we have downregulated RAN-binding protein 1 (RANBP1), a RAN partner that has highest abundance in G2 and mitosis, in human cells. RANBP1-depleted cells underwent prolonged prometaphase delay often followed by apoptosis.
View Article and Find Full Text PDFThe p53-related p73 proteins regulate developmental processes, cell growth, and DNA damage response. p73 function is regulated by post-translational modifications and protein-protein interactions. At the G2/M transition, p73 is phosphorylated at Thr-86 by the p34cdc2/cyclin B complex; this is associated with its exclusion from condensed chromosomes and loss of DNA binding and transcriptional activation ability.
View Article and Find Full Text PDFSpatial control is a key issue in cell division. The Ran GTPase regulates several fundamental processes for cell life, largely acting through importin molecules. The best understood of these is protein import through the nuclear envelope in interphase, but roles in mitotic spindle assembly are also established.
View Article and Find Full Text PDFp73 is a p53 paralog that encodes proapoptotic (transactivation-competent (TA)) and antiapoptotic (dominant negative) isoforms. TAp73 transcription factors mediate cell cycle arrest and/or apoptosis in response to DNA damage and are involved in developmental processes in the central nervous system and the immune system. p73 proteins may also play a role in the regulation of cell growth.
View Article and Find Full Text PDFThe Ran GTPase plays a central function in control of nucleo-cytoplasmic transport in interphase. Mitotic roles of Ran have also been firmly established in Xenopus oocyte extracts. In this system, Ran-GTP, or the RCC1 exchange factor for Ran, drive spindle assembly by regulating the availability of 'aster-promoting activities'.
View Article and Find Full Text PDFWe have investigated the sensitivity of pre-implantation embryos obtained by natural breeding (NB) or in vitro fertilization (IVF) to extremely low-frequency magnetic fields (ELF-MF). Fertilized eggs obtained by NB were removed from mothers 12h after mating and cultured in vitro for 5 days under continuous ELF-MF exposure (constant strength of 50Hz and various intensities, i.e.
View Article and Find Full Text PDFEndogenous, nontelomeric reverse transcriptase (RT) is encoded by two classes of repeated elements: retrotransposons and endogenous retroviruses. Expression of RT-coding genes is generally repressed in differentiated nonpathological tissues, yet is active in the mammalian germ line, embryonic tissues and tumor cells. Nevirapine is a non-nucleoside RT inhibitor with a well-characterized inhibitory activity on RT enzymes of retroviral origin.
View Article and Find Full Text PDFBy means of the yeast two-hybrid system, we have discovered a novel physical interaction between the adenovirus E1A oncoprotein and Ran, a small GTPase which regulates nucleocytoplasmic transport, cell cycle progression, and mitotic spindle organization. Expression of E1A elicits induction of S phase and centrosome amplification in a variety of rodent cell lines. The induction of supernumerary centrosomes requires functional RCC1, the nucleotide exchange factor for Ran and, hence, a functional Ran network.
View Article and Find Full Text PDF