Publications by authors named "Rosalyn Ram"

Article Synopsis
  • New technologies are being developed that can detect tiny pieces of tumor DNA in blood, which could help doctors make better treatment decisions for cancer patients.
  • A new test called FoundationOne®Tracker can track changes in this tumor DNA without needing extra samples from patients, which makes it easier and faster to get results.
  • The test is really accurate, with 99.6% specificity and over 97% sensitivity, meaning it works well to find the tumor DNA in blood samples.
View Article and Find Full Text PDF

Several studies have demonstrated the prognostic value of circulating tumor DNA (ctDNA); however, the correlation of mean tumor molecules (MTM)/ml of plasma and mean variant allele frequency (mVAF; %) with clinical parameters is yet to be understood. In this study, we analyzed ctDNA data in a pan-cancer cohort of 23 543 patients who had ctDNA testing performed using a personalized, tumor-informed assay (Signatera™, mPCR-NGS assay). For ctDNA-positive patients, the correlation between MTM/ml and mVAF was examined.

View Article and Find Full Text PDF

Purpose: Novel sensitive methods for early detection of relapse and for monitoring therapeutic efficacy may have a huge impact on risk stratification, treatment, and ultimately outcome for patients with bladder cancer. We addressed the prognostic and predictive impact of ultra-deep sequencing of cell-free DNA in patients before and after cystectomy and during chemotherapy.

Patients And Methods: We included 68 patients with localized advanced bladder cancer.

View Article and Find Full Text PDF

Background: Early detection of rejection in kidney transplant recipients holds the promise to improve clinical outcomes. Development and implementation of more accurate, noninvasive methods to detect allograft rejection remain an ongoing challenge. The limitations of existing allograft surveillance methods present an opportunity for donor-derived cell-free DNA (dd-cfDNA), which can accurately and rapidly differentiate patients with allograft rejection from patients with stable organ function.

View Article and Find Full Text PDF

The innate immune-signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic.

View Article and Find Full Text PDF

The study of macroautophagy in mammalian cells has described induction, vesicle nucleation, and membrane elongation complexes as key signaling intermediates driving autophagosome biogenesis. How these components are recruited to nascent autophagosomes is poorly understood, and although much is known about signaling mechanisms that restrain autophagy, the nature of positive inductive signals that can promote autophagy remain cryptic. We find that the Ras-like small G protein, RalB, is localized to nascent autophagosomes and is activated on nutrient deprivation.

View Article and Find Full Text PDF

Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking.

View Article and Find Full Text PDF

Oligonucleotides containing locked nucleic acid bases (LNAs) have increased affinity for complementary DNA sequences. We hypothesized that enhanced affinity might allow LNAs to recognize chromosomal DNA inside human cells and inhibit gene expression. To test this hypothesis, we synthesized antigene LNAs (agLNAs) complementary to sequences within the promoters of progesterone receptor (PR) and androgen receptor (AR).

View Article and Find Full Text PDF

The ability to selectively activate or inhibit gene expression is fundamental to understanding complex cellular systems and developing therapeutics. Recent studies have demonstrated that duplex RNAs complementary to promoters within chromosomal DNA are potent gene silencing agents in mammalian cells. Here we report that chromosome-targeted RNAs also activate gene expression.

View Article and Find Full Text PDF

Duplex RNAs complementary to messenger RNA inhibit translation in mammalian cells by RNA interference (RNAi). Studies have reported that RNAs complementary to promoter DNA also inhibit gene expression. Here we show that the human homologs of Argonaute-1 (AGO1) and Argonaute-2 (AGO2) link the silencing pathways that target mRNA with pathways mediating recognition of DNA.

View Article and Find Full Text PDF

Transcription start sites are critical switches for converting recognition of chromosomal DNA into active synthesis of RNA. Their functional importance suggests that they may be ideal targets for regulating gene expression. Here, we report potent inhibition of gene expression by antigene RNAs (agRNAs) complementary to transcription start sites within human chromosomal DNA.

View Article and Find Full Text PDF

Synthetic molecules that recognize specific sequences within cellular DNA are potentially powerful tools for investigating chromosome structure and function. Here, we designed antigene peptide nucleic acids (agPNAs) to target the transcriptional start sites for the human progesterone receptor B (hPR-B) and A (hPR-A) isoforms at sequences predicted to be single-stranded within the open complex of chromosomal DNA. We found that the agPNAs were potent inhibitors of transcription, showing for the first time that synthetic molecules can recognize transcription start sites inside cells.

View Article and Find Full Text PDF

Invasion of glioma cells involves the attachment of invading tumor cells to extracellular matrix (ECM), disruption of ECM components, and subsequent cell penetration into adjacent brain structures. Discoidin domain receptor 1 (DDR1) tyrosine kinases constitute a novel family of receptors characterized by a unique structure in the ectodomain (discoidin-I domain). These cell surface receptors bind to several collagens and facilitate cell adhesion.

View Article and Find Full Text PDF