Tourette syndrome (TS) is a disorder of high-order integration of sensory, motor, and cognitive functions afflicting as many as 1 in 150 children and characterized by motor hyperactivity and tics. Despite high familial recurrence rates, a few risk genes and no biomarkers have emerged as causative or predisposing factors. The syndrome is believed to originate in basal ganglia, where patterns of motor programs are encoded.
View Article and Find Full Text PDFA preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity.
View Article and Find Full Text PDFThe dopamine hypothesis of schizophrenia suggests that psychotic symptoms originate from dysregulation of dopaminergic activity, which may be controlled by upstream innervation. We hypothesized that we would find anatomical evidence for the hyperexcitability seen in the SN. We examined and quantified synaptic morphology, which correlates with function, in the postmortem substantia nigra (SN) from 15 schizophrenia and 12 normal subjects.
View Article and Find Full Text PDFWe analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions.
View Article and Find Full Text PDFSchizophrenia susceptibility factor dysbindin-1 is associated with cognitive processes. Downregulated dysbindin-1 expression is associated with lower expression of copper transporters ATP7A and CTR1, required for copper transport to the central nervous system. We measured dysbindin-1 isoforms-1A and -1BC, CTR1, and ATP7A via Western blots of the postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects (n = 28) and matched controls (n = 14).
View Article and Find Full Text PDFDysbindin-1 modulates copper transport, which is crucial for cellular homeostasis. Several brain regions implicated in schizophrenia exhibit decreased levels of dysbindin-1, which may affect copper homeostasis therein. Our recent study showed decreased levels of dysbindin-1, the copper transporter-1 (CTR1) and copper in the substantia nigra in schizophrenia, providing the first evidence of disrupted copper transport in schizophrenia.
View Article and Find Full Text PDFImaging and postmortem studies indicate that schizophrenia subjects exhibit abnormal connectivity in several white matter tracts, including the cingulum bundle. Copper chelators given to experimental animals damage myelin and myelin-producing oligodendrocytes, and the substantia nigra of schizophrenia subjects shows lower levels of copper, copper transporters, and copper-utilizing enzymes. This study aimed to elucidate the potential role of copper homeostasis in white matter pathology in schizophrenia.
View Article and Find Full Text PDFLoss-of-function PTEN Induced Kinase 1 (PINK1) mutations cause early-onset familial Parkinson's disease (PD) with similar clinical and neuropathological characteristics as idiopathic PD. While Pink1 knockout (KO) rats have mitochondrial dysfunction, locomotor deficits, and α-synuclein aggregates in several brain regions such as cerebral cortex, dorsal striatum, and substantia nigra, the functional ramifications on synaptic circuits are unknown. Using whole cell patch clamp recordings, we found a significant increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) onto striatal spiny projection neurons (SPNs) in Pink1 KO rats at ages 4 and 6 months compared to wild-type (WT) littermates, suggesting increased excitability of presynaptic neurons.
View Article and Find Full Text PDFMitochondrion
January 2021
Among the many brain abnormalities in schizophrenia are those related to mitochondrial functions such as oxidative stress, energy metabolism and synaptic efficacy. The aim of this paper is to provide a brief review of mitochondrial structure and function and then to present abnormalities in mitochondria in postmortem brain in schizophrenia with a focus on anatomy. Deficits in expression of various mitochondrial genes have been found in multiple schizophrenia cohorts.
View Article and Find Full Text PDFBackground And Purpose: DTNBP1 gene variation and lower dysbindin-1 protein are associated with schizophrenia. Previous evidence suggests that downregulated dysbindin-1 expression results in lower expression of copper transporters ATP7A (intracellular copper transporter) and SLC31A1 (CTR1; extracellular copper transporter), which are required for copper transport across the blood brain barrier. However, whether antipsychotic medications used for schizophrenia treatment may modulate these systems is unclear.
View Article and Find Full Text PDFThe aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response.
View Article and Find Full Text PDFThe substantia nigra (SN) receives glutamatergic and GABAergic inputs that regulate dopaminergic neuronal activity. Imaging studies have shown hyperactivity of the SN in schizophrenia (SZ) patients. We examined neurochemically defined inputs to the SN, synaptic density, and neuromelanin content that might contribute to or reflect this hyperexcitability.
View Article and Find Full Text PDFBackground And Purpose: Imaging studies have shown that people with schizophrenia exhibit abnormal connectivity termed "dysconnectivity" in several white matter tracts, including the cingulum bundle (CB), corpus callosum (CC), and arcuate fasciculus (AF). This study aimed to elucidate potential contributors to schizophrenia "dysconnectivity."
Experimental Approach: Western blot analysis was used to compare protein levels of myelin basic protein, neurofilament heavy, autophagosome marker LC3, and microtubule marker α-tubulin in post-mortem human CB, CC, and AF in schizophrenia subjects (SZ) and matched normal controls (NC).
Several schizophrenia brain regions exhibit decreased dysbindin. Dysbindin modulates copper transport crucial for myelination, monoamine metabolism and cellular homeostasis. Schizophrenia patients (SZP) exhibit increased plasma copper, while copper-decreasing agents produce schizophrenia-like behavioural and pathological abnormalities.
View Article and Find Full Text PDFSchizophrenia is a severe mental illness affecting approximately 1% of the population worldwide. Despite its prevalence, the cause remains unknown, and treatment is not effective in all patients. Dopamine is thought to play a role in schizophrenia pathology, yet the substantia nigra (SN), the origin of dopaminergic pathways, has not been studied extensively in schizophrenia.
View Article and Find Full Text PDFThe aim of this paper is to provide a brief review of mitochondrial structure as it relates to function and then present abnormalities in mitochondria in postmortem schizophrenia with a focus on ultrastructure. Function, morphology, fusion, fission, motility, ΔΨmem, ATP production, mitochondrial derived vesicles, and mitochondria-associated ER membranes will be briefly covered. Pathology in mitochondria has long been implicated in schizophrenia, as shown by genetic, proteomic, enzymatic and anatomical abnormalities.
View Article and Find Full Text PDFCoordinated activity of neural circuitry in the primate dorsolateral prefrontal cortex (DLPFC) supports a range of cognitive functions. Altered DLPFC activation is implicated in a number of human psychiatric and neurological illnesses. Proper DLPFC activity is, in part, maintained by two populations of neurons containing the calcium-binding protein parvalbumin (PV): local inhibitory interneurons that form Type II synapses, and long-range glutamatergic inputs from the thalamus that form Type I synapses.
View Article and Find Full Text PDFThe substantia nigra (SN) provides the largest dopaminergic input to the brain, projects to the striatum (the primary locus of action for antipsychotic medication), and receives GABAergic and glutamatergic inputs. This study used western blot analysis to compare protein levels of tyrosine hydroxylase (TH), glutamate decarboxylase (GAD67), and vesicular glutamate transporters (vGLUT1 and vGLUT2) in postmortem human SN in schizophrenia subjects (n=13) and matched controls (n=12). As a preliminary analysis, the schizophrenia group was subdivided by (1) treatment status: off medication (n=4) or on medication (n=9); or (2) treatment response: treatment resistant (n=5) or treatment responsive (n=4).
View Article and Find Full Text PDFBrain Struct Funct
December 2016
The nucleus accumbens (NAcc) has been implicated in schizophrenia (SZ) pathology, based on antipsychotic action therein. However, recent imaging studies suggest that the NAcc may not be a locus of dopamine dysregulation in SZ. This study examined postmortem human tissue to determine if abnormalities are present in dopamine synthesis in the NAcc in SZ.
View Article and Find Full Text PDFThe nucleus accumbens (NAcc) is often implicated in schizophrenia (SZ) pathology, but with little evidence to support its role. This study examined postmortem human tissue to determine if abnormalities are present in the dopaminergic or glutamatergic systems in the NAcc in SZ. We compared the protein levels of tyrosine hydroxylase (TH) and vesicular glutamate transporters vGLUT1 and vGLUT2 in control (n=7) and schizophrenia (n=13) subjects using Western blot analysis.
View Article and Find Full Text PDFThe cause of schizophrenia (SZ) is unknown and no single region of the brain can be pinpointed as an area of primary pathology. Rather, SZ results from dysfunction of multiple neurotransmitter systems and miswiring between brain regions. It is necessary to elucidate how communication between regions is disrupted to advance our understanding of SZ pathology.
View Article and Find Full Text PDFFrontotemporal dementia (FTD) is a neurodegenerative behavioral disorder that selectively affects the salience network, including the ventral striatum and insula. Tau mutations cause FTD, but how mutant tau impairs the salience network is unknown. Here, we address this question using a mouse model expressing the entire human tau gene with an FTD-associated mutation (V337M).
View Article and Find Full Text PDFPrevious work from our laboratory showed deficits in tyrosine hydroxylase protein expression within the substantia nigra/ventral tegmental area (SN/VTA) in schizophrenia. However, little is known about the nature and specific location of these deficits within the SN/VTA. The present study had two aims: (1) test if tyrosine hydroxylase deficits could be explained as the result of neuronal loss; (2) assess if deficits in tyrosine hydroxylase are sub-region specific within the SN/VTA, and thus, could affect specific dopaminergic pathways.
View Article and Find Full Text PDFPerturbations in metabolism are a well-documented but complex facet of schizophrenia pathology. Optimal cellular performance requires the proper functioning of the electron transport chain, which is constituted by four enzymes located within the inner membrane of mitochondria. These enzymes create a proton gradient that is used to power the enzyme ATP synthase, producing ATP, which is crucial for the maintenance of cellular functioning.
View Article and Find Full Text PDFThe anterior cingulate cortex (ACC) is one of several brain regions that are abnormal in schizophrenia (SZ). Here we compared markers of synapse and mitochondrial function using western blots of postmortem ACC in: 1) normal controls (NCs, n=13) vs subjects with SZ (n=25); NC, treatment-resistant SZ, and treatment-responsive SZ; and 3) NC and SZ treated with typical or atypical antipsychotic drugs (APDs). Protein levels of synaptophysin, mitofusin-2, vGLUT1, and calcineurin did not differ between the NC and SZ group as a whole, or the NCs vs the SZ group divided by treatment response or type of APDs.
View Article and Find Full Text PDF