Characteristics that would make enzymes more desirable for industrial applications can be improved using directed evolution. We developed a directed evolution technique called random drift mutagenesis (RNDM). Mutant populations are screened and all functional mutants are collected and put forward into the next round of mutagenesis and screening.
View Article and Find Full Text PDFThermus aquaticus DNA polymerase (Taq polymerase) made the polymerase chain reaction feasible and led to a paradigm shift in genomic analysis. Other Thermus polymerases were reported to have comparable performance in PCR and there was an analysis of their properties in the 1990s. We re-evaluated our earlier phylogeny of Thermus species on the basis of 16S rDNA sequences and concluded that the genus could be divided into eight clades.
View Article and Find Full Text PDFBacterial non-oxidative, reversible multi subunit hydroxyarylic acid decarboxylases/phenol carboxylases are encoded by the three clustered genes, B, C, and D, of approximately 0.6, 1.4, and 0.
View Article and Find Full Text PDFImprovement of the biochemical characteristics of enzymes has been aided by misincorporation mutagenesis and DNA shuffling. Many gene shuffling techniques result predominantly in the regeneration of unshuffled (parental) molecules. We describe a procedure for gene shuffling using degenerate primers that allows control of the relative levels of recombination between the genes that are shuffled, and reduces the regeneration of unshuffled parental genes.
View Article and Find Full Text PDFPlasmid shuttle vectors that contain both prokaryotic (Escherichia coli) and eukaryotic origins of replication are routinely used in molecular biology since E. coli is generally the organism of choice for manipulation of recombinant DNA. Initial transformation of the shuttle vector into E.
View Article and Find Full Text PDF