Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial.
View Article and Find Full Text PDFExercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8).
View Article and Find Full Text PDFBackground And Aims: The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2020
Mammalian lipid droplets (LDs), first described as early as the 1880s, were virtually ignored for more than 100 years. Between 1991 and the early 2000s, however, a series of discoveries and conceptual breakthroughs led to a resurgent interest in obesity as a disease, in the metabolism of intracellular triacylglycerol (TAG), and in the physical locations of LDs as cellular structures with their associated proteins. Insights included the recognition that obesity underlies major chronic diseases, that appetite is hormonally controlled, that hepatic steatosis is not a benign finding, and that diabetes might fundamentally be a disorder of lipid metabolism.
View Article and Find Full Text PDFLoss of long-chain acyl-CoA synthetase isoform-1 (ACSL1) in mouse skeletal muscle () severely reduces acyl-CoA synthetase activity and fatty acid oxidation. However, the effects of decreased fatty acid oxidation on skeletal muscle function, histology, use of alternative fuels, and mitochondrial function and morphology are unclear. We observed that mice have impaired voluntary running capacity and muscle grip strength and that their gastrocnemius muscle contains myocytes with central nuclei, indicating muscle regeneration.
View Article and Find Full Text PDFNeutral lipid storage disease with myopathy (NLSDM) and with ichthyosis (NLSDI) are rare autosomal recessive disorders caused by mutations in the and in the genes, respectively. These genes encode the adipose triglyceride lipase (ATGL) and α-β hydrolase domain 5 (ABHD5) proteins, which play key roles in the function of lipid droplets (LDs). LDs, the main cellular storage sites of triacylglycerols and sterol esters, are highly dynamic organelles.
View Article and Find Full Text PDFDiet, hormones, gene transcription, and posttranslational modifications control the hepatic metabolism of FAs; metabolic dysregulation causes chronic diseases, including cardiovascular disease, and warrants exploration into the mechanisms directing FA and triacylglycerol (TAG) synthesis and degradation. Long-chain FA metabolism begins by formation of an acyl-CoA by a member of the acyl-CoA synthetase (ACSL) family. Subsequently, TAG synthesis begins with acyl-CoA esterification to glycerol-3-phosphate by a member of the glycerol-3-phosphate acyltransferase (GPAT) family.
View Article and Find Full Text PDFHepatic insulin resistance in the setting of steatosis is attributable at least in part to the accumulation of bioactive lipids that suppress insulin signaling. The mitochondria-associated glycerol-3-phosphate acyltransferase 1 (GPAT1) catalyzes the first committed step in glycerolipid synthesis, and its activity diverts fatty acids from mitochondrial β-oxidation. GPAT1 overexpression in mouse liver leads to hepatic steatosis even in the absence of overnutrition.
View Article and Find Full Text PDFMacrophage classical M1 activation via TLR4 triggers a variety of responses to achieve the elimination of foreign pathogens. During this process, there is also an increase in lipid droplets which contain large quantities of triacylglycerol (TAG) and phospholipid (PL). The functional consequences of this increment in lipid mass are poorly understood.
View Article and Find Full Text PDFCommitment to ambitious and time-bound targets for HIV interventions has been part of the response from the beginning of the HIV epidemic. The Joint United Nations Programme on HIV/AIDS (UNAIDS) HIV primary prevention workA is built on five pillars that include offering pre-exposure prophylaxis (PrEP) to population groups at substantial risk of HIV infection. After a slow start, countries are now setting coverage targets for PrEP, but the weakness of epidemiological, demographic and behavioural data at subnational level in many countries where there is a high burden of new HIV infections, makes it difficult to define the locations and populations where to offer PrEP.
View Article and Find Full Text PDFIn addition to high-fat diet (HFD) and inactivity, inflammation and microbiota composition contribute to obesity. Inhibitory immune receptors, such as NLRP12, dampen inflammation and are important for resolving inflammation, but their role in obesity is unknown. We show that obesity in humans correlates with reduced expression of adipose tissue NLRP12.
View Article and Find Full Text PDFFatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA synthetases (ACSLs) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs, which are then either oxidized or used in esterification reactions.
View Article and Find Full Text PDFCardiolipin (CL) is an anionic phospholipid mainly located in the inner mitochondrial membrane, where it helps regulate bioenergetics, membrane structure, and apoptosis. Localized, phase-segregated domains of CL are hypothesized to control mitochondrial inner membrane organization. However, the existence and underlying mechanisms regulating these mitochondrial domains are unclear.
View Article and Find Full Text PDFBackground: Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs. Cardiac-specific ACSL1 temporal knockout at 2 months results in a shift from FA oxidation toward glycolysis that promotes mTORC1-mediated ventricular hypertrophy. We used unbiased metabolomics and gene expression analyses to examine the early effects of genetic inactivation of fatty acid oxidation on cardiac metabolism, hypertrophy development, and function.
View Article and Find Full Text PDFObjective: Regulation of fatty acid (FA) metabolism is central to adipocyte dysfunction during diet-induced obesity (DIO). Long-chain acyl-CoA synthetase-4 (ACSL4) has been hypothesized to modulate the metabolic fates of polyunsaturated FA (PUFA), including arachidonic acid (AA), but the in vivo actions of ACSL4 are unknown. The purpose of our studies was to determine the in vivo role of adipocyte ACSL4 in regulating obesity-associated adipocyte dysfunction.
View Article and Find Full Text PDFBecause the signaling eicosanoids, epoxyeicosatrienoic acids (EETs) and HETEs, are esterified to membrane phospholipids, we asked which long-chain acyl-CoA synthetase (ACSL) isoforms would activate these molecules and whether the apparent FA substrate preferences of each ACSL isoform might differ depending on whether it was assayed in mammalian cell membranes or as a purified bacterial recombinant protein. We found that all five ACSL isoforms were able to use EETs and HETEs as substrates and showed by LC-MS/MS that ACSLs produce EET-CoAs. We found differences in substrate preference between ACS assays performed in COS7 cell membranes and recombinant purified proteins.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
March 2017
Glycerol-3-phosphate acyltransferases (GPAT) catalyze the initial and rate-limiting step for the de novo synthesis of triacylglycerol (TAG). Four mammalian GPAT isoforms have been identified: the mitochondria-associated GPAT1 and 2, and the endoplasmic reticulum (ER)-associated GPAT3 and 4. In the insect Rhodnius prolixus, a vector of Chagas' disease, we previously predicted a mitochondrial-like isoform (RhoprGPAT1) from genomic data.
View Article and Find Full Text PDFBerardinelli-Seip congenital lipodystrophy 2 (BSCL2) is caused by loss-of-function mutations in SEIPIN, a protein implicated in both adipogenesis and lipid droplet expansion but whose molecular function remains obscure. Here, we identify physical and functional interactions between SEIPIN and microsomal isoforms of glycerol-3-phosphate acyltransferase (GPAT) in multiple organisms. Compared to controls, GPAT activity was elevated in SEIPIN-deficient cells and tissues and GPAT kinetic values were altered.
View Article and Find Full Text PDFIntroduction: The offer of pre-exposure prophylaxis (PrEP) is recommended as an additional option for HIV prevention for people at substantial risk of HIV infection as part of combination HIV prevention approaches. Implementing this depends on integrating PrEP in public health programmes that address risky practices with evidence-based interventions, and that operate in an enabling legal and policy environment for the delivery of health services to those at higher risk of HIV infection. What does this recommendation mean in terms of the diverse range of HIV prevention needs of key populations, some of whom are so discriminated against that they exist essentially outside formal systems such as national public health services, and for whom a substantial risk of HIV is part of a larger adverse and hostile situation? We discuss this question with reference to people who inject drugs, informed by concerns and comments that emerged from a series of consultations.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2017
Our understanding of the synthesis and remodeling of mitochondrial phospholipids remains incomplete. Two isoforms of glycerol-3-phosphate acyltransferase (GPAT1 and 2) and two isoforms of acylglycerol-3-phosphate acyltransferase (AGPAT4 and 5) are located on the outer mitochondrial membrane, suggesting that both lysophosphatidic acid and phosphatidic acid are synthesized in situ for de novo glycerolipid biosynthesis. However, it is believed that the phosphatidic acid substrate for cardiolipin and phosphatidylethanolamine biosynthesis is produced at the endoplasmic reticulum whereas the phosphatidic acid synthesized in the mitochondria must be transferred to the endoplasmic reticulum before it undergoes additional steps to form the mature phospholipids that are trafficked back to the mitochondria.
View Article and Find Full Text PDFLong-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2016
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction.
View Article and Find Full Text PDF