Publications by authors named "Rosalie de Beaumont"

Interferons (IFNs) are cytokines that play a critical role in limiting infectious and malignant diseases . Emerging data suggest that the strength and duration of IFN signaling can differentially impact cancer therapies, including immune checkpoint blockade . Here, we characterize the output of IFN signaling, specifically IFN-stimulated gene (ISG) signatures, in primary tumors from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines.

View Article and Find Full Text PDF

Unlabelled: CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation.

View Article and Find Full Text PDF

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5.

View Article and Find Full Text PDF

Deregulation of the PI3K signaling pathway is observed in many human cancers and occurs most frequently through loss of PTEN phosphatase tumor suppressor function or through somatic activating mutations in the Class IA PI3K, PIK3CA. Tumors harboring activated p110alpha, the protein product of PIK3CA, require p110alpha activity for growth and survival and hence are expected to be responsive to inhibitors of its lipid kinase activity. Whether PTEN-deficient cancers similarly depend on p110alpha activity to sustain activation of the PI3K pathway has been unclear.

View Article and Find Full Text PDF

The sterol regulatory element binding protein (SREBP) family of transcription activators are critical regulators of cholesterol and fatty acid homeostasis. We previously demonstrated that human SREBPs bind the CREB-binding protein (CBP)/p300 acetyltransferase KIX domain and recruit activator-recruited co-factor (ARC)/Mediator co-activator complexes through unknown mechanisms. Here we show that SREBPs use the evolutionarily conserved ARC105 (also called MED15) subunit to activate target genes.

View Article and Find Full Text PDF

The human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator, was recently identified based on functional association with the activation domains of multiple cellular and viral transcriptional activators, including the herpes simplex viral activator VP16, sterol regulatory element binding protein, and NF-kappaB. Here we describe the biochemical purification and cloning of the 92-kDa ARC/Mediator subunit, ARC92, that is specifically targeted by the activation domain of the VP16 transactivator. Affinity chromatography using the VP16 activation domain followed by peptide microsequencing led to the identification of ARC92 as a specific cellular interaction partner of the VP16 activation domain.

View Article and Find Full Text PDF

Follicular lymphomas (FLs) localize in lymphoid tissues and recapitulate the structure of normal secondary follicles. The chemokine/chemokine receptor pair CXCL13/CXCR5 is required for the architectural organization of B cells within lymphoid follicles. In this study, we showed that CXCL13 was secreted by FL cells.

View Article and Find Full Text PDF
Article Synopsis
  • RAFTK is identified as an upstream kinase that activates Akt in the context of beta1 integrin signaling, specifically impacting cell survival.
  • Stimulation through beta1 integrins by fibronectin prevents apoptosis caused by adriamycin, indicating a protective role.
  • The study suggests that RAFTK operates upstream of the PI3K/Akt pathway, as its activation is linked to the activation of Akt and occurs independently of other kinases like FAK.
View Article and Find Full Text PDF

The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis.

View Article and Find Full Text PDF