MicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval.
View Article and Find Full Text PDFMicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval.
View Article and Find Full Text PDFPurpose: Meningioma is the most common primary central nervous system tumor often causing serious complications, and presently no medical treatment is available. The goal of this study was to discover miRNAs dysregulated in meningioma, and explore miRNA-associated pathways amenable for therapeutic interventions.
Methods: Small RNA sequencing was performed on meningioma tumor samples to study grade-dependent changes in microRNA expression.
MicroRNA-10b (miR-10b) is an essential glioma driver and one of the top candidates for targeted therapies for glioblastoma and other cancers. This unique miRNA controls glioma cell cycle and viability via an array of established conventional and unconventional mechanisms. Previously reported CRISPR-Cas9-mediated miR-10b gene editing of glioma cells and established orthotopic glioblastoma in mouse models demonstrated the efficacy of this approach and its promise for therapy development.
View Article and Find Full Text PDFmiR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer.
View Article and Find Full Text PDFBackground: miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2021
Meningioma is the most common primary central nervous system tumor. Although mostly nonmalignant, meningioma can cause serious complications by mass effect and vasogenic edema. While surgery and radiation improve outcomes, not all cases can be treated due to eloquent location.
View Article and Find Full Text PDFGlioblastoma (GBM) may arise from astrocytes through a multistep process involving a progressive accumulation of mutations. We explored whether GBM-derived extracellular vesicles (EVs) may facilitate neoplastic transformation and malignant growth of astrocytes. We utilized conditioned media (CM) of cultured glioma cells, its sequential filtration, diverse cell-based assays, RNA sequencing, and metabolic assays to compare the effects of EV-containing and EV-depleted CM.
View Article and Find Full Text PDFUnlabelled: Intercellular communication within complex biological and pathological systems via extracellular vesicles (EVs) and secreted factors is a highly attractive area of research. However, cell models enabling investigation of such communication are limited. Commonly utilized is the supplementation of hyper-concentrated EVs or other extracellular factors to the recipient cell cultures.
View Article and Find Full Text PDFMicroRNAs (miRNA) regulate fundamental biological processes, including neuronal plasticity, stress response, and survival. Here, we describe a neuroprotective function of miR-132, the miRNA most significantly downregulated in neurons in Alzheimer's disease. We demonstrate that miR-132 protects primary mouse and human wild-type neurons and more vulnerable Tau-mutant neurons against amyloid β-peptide (Aβ) and glutamate excitotoxicity.
View Article and Find Full Text PDFTumor-released RNA may mediate intercellular communication and serve as biomarkers. Here we develop a protocol enabling quantitative, minimally biased analysis of extracellular RNAs (exRNAs) associated with microvesicles, exosomes (collectively called EVs), and ribonucleoproteins (RNPs). The exRNA complexes isolated from patient-derived glioma stem-like cultures exhibit distinct compositions, with microvesicles most closely reflecting cellular transcriptome.
View Article and Find Full Text PDFAberrations in oncogenes and tumor suppressors frequently affect the activity of critical signal transduction pathways. To analyze systematically the relationship between the activation status of protein networks and other characteristics of cancer cells, we did reverse phase protein array (RPPA) profiling of the NCI60 cell lines for total protein expression and activation-specific markers of critical signaling pathways. To extend the scope of the study, we merged those data with previously published RPPA results for the NCI60.
View Article and Find Full Text PDFThe lipid phosphatase PTEN functions as a tumor suppressor by dephosphorylating the D3 position of phosphoinositide-3,4,5-trisphosphate, thereby negatively regulating the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In mammalian cells, PTEN exists either as a monomer or as a part of a >600-kDa complex (the PTEN-associated complex [PAC]). Previous studies suggest that the antagonism of PI3K/AKT signaling by PTEN may be mediated by a nonphosphorylated form of the protein resident within the multiprotein complex.
View Article and Find Full Text PDFDysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth.
View Article and Find Full Text PDFClinical resistance to epidermal growth factor receptor (EGFR) inhibition in lung cancer has been linked to the emergence of the EGFR T790M resistance mutation or amplification of MET. Additional mechanisms contributing to EGFR inhibitor resistance remain elusive. By applying combined analyses of gene expression, copy number, and biochemical analyses of EGFR inhibitor responsiveness, we identified homozygous loss of PTEN to segregate EGFR-dependent and EGFR-independent cells.
View Article and Find Full Text PDFCancer dormancy delineates a situation in which residual tumor cells persist in a patient with no apparent clinical symptoms. Although the precise mechanisms underlying cancer dormancy have not been explained, experimental models have provided some insights into the factors that might be involved in the induction and maintenance of a tumor dormant state. The authors of the present chapter studied a murine B cell lymphoma that can be made dormant when interacting with antibodies directed against the idiotype on its immunoglobulin Ig receptor.
View Article and Find Full Text PDF