Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment.
View Article and Find Full Text PDFNatural killer (NK) cells are the predominant innate lymphocytes that provide early defense against infections. In the inflammatory milieu, NK cells modify their metabolism to support high energy demands required for their proliferation, activation, and functional plasticity. This metabolic reprogramming is usually accompanied by the upregulation of nutrient transporter expression on the cell surface, leading to increased nutrient uptake required for intense proliferation.
View Article and Find Full Text PDFCancer is caused primarily by genomic alterations resulting in deregulation of gene regulatory circuits in key growth, apoptosis, or DNA repair pathways. Multiple genes associated with the initiation and development of tumors are also regulated at the level of mRNA decay, through the recruitment of RNA-binding proteins to AU-rich elements (AREs) located in their 3'-untranslated regions. One of these ARE-binding proteins, tristetraprolin (TTP; encoded by Zfp36), is consistently dysregulated in many human malignancies.
View Article and Find Full Text PDFAdaptive immune responses are acknowledged to evolve from innate immunity. However, limited information exists regarding whether encounters between innate cells direct the generation of specialized T-cell subsets. We aim to understand how natural killer (NK) cells modulate cell-mediated immunity in humans.
View Article and Find Full Text PDFHemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes typically associated with underlying hematologic and rheumatic diseases, respectively. Familial HLH is associated with genetic cytotoxic impairment and thereby to excessive antigen presentation. Extreme elevation of serum interleukin-18 (IL-18) has been observed specifically in patients with MAS, making it a promising therapeutic target, but how IL-18 promotes hyperinflammation remains unknown.
View Article and Find Full Text PDFCancer development requires a favorable tissue microenvironment. By deleting in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells.
View Article and Find Full Text PDFCommensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair.
View Article and Find Full Text PDFThe gut microbiota influences both local and systemic inflammation. Inflammation contributes to development, progression, and treatment of cancer, but it remains unclear whether commensal bacteria affect inflammation in the sterile tumor microenvironment. Here, we show that disruption of the microbiota impairs the response of subcutaneous tumors to CpG-oligonucleotide immunotherapy and platinum chemotherapy.
View Article and Find Full Text PDFToll-like and interleukin-1 (IL-1) family receptors recognize microbial or endogenous ligands and inflammatory mediators, respectively, and with the exception of Toll-like receptor 3 (TLR3), signal via the adaptor molecule myeloid differentiation factor 88 (MyD88). MyD88 is involved in oncogene-induced cell intrinsic inflammation and in cancer-associated extrinsic inflammation, and as such MyD88 contributes to skin, liver, pancreatic, and colon carcinogenesis, as well as sarcomagenesis. MyD88 is also protective, for example in oncogenic virus carcinogenesis or, acting downstream of IL-18R to strengthen mucosal repair, in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon carcinogenesis.
View Article and Find Full Text PDFThe mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracts, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome. The long-term consequences for the host of interactions with these microbial species can range from mutualism to parasitism and are not always completely understood.
View Article and Find Full Text PDFLaser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are (a) visualization of cells via light microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section.
View Article and Find Full Text PDFConstitutively active RAS plays a central role in the development of human cancer and is sufficient to induce tumors in two-stage skin carcinogenesis. RAS-mediated tumor formation is commonly associated with up-regulation of cytokines and chemokines that mediate an inflammatory response considered relevant to oncogenesis. In this study, we report that mice lacking IL-1R or MyD88 are less sensitive to topical skin carcinogenesis than their respective wild-type (WT) controls.
View Article and Find Full Text PDFIntestinal commensal bacteria induce protective and regulatory responses that maintain host-microbial mutualism. However, the contribution of tissue-resident commensals to immunity and inflammation at other barrier sites has not been addressed. We found that in mice, the skin microbiota have an autonomous role in controlling the local inflammatory milieu and tuning resident T lymphocyte function.
View Article and Find Full Text PDFChronic inflammation drives liver cancer pathogenesis, invasion, and metastasis. Liver Kupffer cells have crucial roles in mediating the inflammatory processes that promote liver cancer, but the mechanistic basis for their contributions are not fully understood. Here we show that expression of the proinflammatory myeloid cell surface receptor TREM-1 expressed by Kupffer cells is a crucial factor in the development and progression of liver cancer.
View Article and Find Full Text PDFUsing two MYCN transgenic mouse strains, we established 10 transplantable neuroblastoma cell lines via serial orthotopic passage in the adrenal gland. Tissue arrays demonstrate that by histochemistry, vascularity, immunohistochemical staining for neuroblastoma markers, catecholamine analysis, and concurrent cDNA microarray analysis, there is a close correspondence between the transplantable lines and the spontaneous tumors. Several genes closely associated with the pathobiology and immune evasion of neuroblastoma, novel targets that warrant evaluation, and decreased expression of tumor suppressor genes are demonstrated.
View Article and Find Full Text PDFOncogene activation promotes an intrinsic inflammatory pathway that is crucial for cancer development. Here, we have investigated the actual effect of the inflammatory cytokine tumor necrosis factor (TNF) on the natural history of spontaneous mammary cancer in the HER2/neuT (NeuT) transgenic mouse model. Bone marrow transplantation from TNF knockout mice into NeuT recipients significantly impaired tumor growth, indicating that the source of TNF fostering tumor development was of bone marrow origin.
View Article and Find Full Text PDFSignaling through the adaptor protein myeloid differentiation factor 88 (MyD88) promotes carcinogenesis in several cancer models. In contrast, MyD88 signaling has a protective role in the development of azoxymethane (AOM)/dextran sodium sulfate (DSS) colitis-associated cancer (CAC). The inability of Myd88(-/-) mice to heal ulcers generated upon injury creates an altered inflammatory environment that induces early alterations in expression of genes encoding proinflammatory factors, as well as pathways regulating cell proliferation, apoptosis, and DNA repair, resulting in a dramatic increase in adenoma formation and progression to infiltrating adenocarcinomas with frequent clonal mutations in the beta-catenin gene.
View Article and Find Full Text PDFIL-27 exerts antitumor activity in murine orthotopic neuroblastoma, but only partial antitumor effect in disseminated disease. This study demonstrates that combined treatment with IL-2 and IL-27 induces potent antitumor activity in disseminated neuroblastoma metastasis. Complete durable tumor regression was achieved in 90% of mice bearing metastatic TBJ-IL-27 tumors treated with IL-2 compared with only 40% of mice bearing TBJ-IL-27 tumors alone and 0% of mice bearing TBJ-FLAG tumors with or without IL-2 treatment.
View Article and Find Full Text PDFAlthough toll-like receptor (TLR) agonists, such as CpG, are used as immunotherapeutic agents in clinical trials for cancer and infectious diseases, their effects are limited and the underlying mechanism(s) that restrains CpG efficacy remains obscure. Here, we show that signal transducer and activator of transcription 3 (Stat3) plays a key role in down-modulating immunostimulatory effects of CpG. In the absence of interleukin-6 (IL-6) and IL-10 induction, CpG directly activates Stat3 within minutes through TLR9.
View Article and Find Full Text PDFHuman neuroblastomas possess several mechanisms of self-defense that may confer an ability to resist apoptosis and contribute to the observed difficulty in treating these tumors in the clinical setting. These molecular alterations may include defects in proapoptotic genes as well as the overexpression of prosurvival factors, such as Akt among others. As a key regulator of the turnover of proteins that modulate the cell cycle and mechanisms of apoptosis, the proteasome could serve as an important target for the treatment of neuroblastoma.
View Article and Find Full Text PDFNeuroblastoma is one of the most common solid tumors in children. The prognosis of patients with advanced neuroblastoma is poor overall despite standard therapeutic modalities and has stimulated substantial interest in the potential role for biologics such as immunotherapeutic and/or antiangiogenic agents for the treatment of neuroblastoma. To facilitate preclinical investigation of the efficacy and mechanisms of action of new biologic agents for the treatment of neuroblastoma, a comprehensive panel of disease-specific fluorescence-based model systems has been developed by our group to image the growth, neovascularization, metastasis, and apoptosis of neuroblastoma tumors.
View Article and Find Full Text PDFBackground: The formylpeptide receptor (FPR) is a G-protein-coupled receptor (GPCR) that mediates chemotaxis of phagocytic leukocytes induced by bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLF). We previously showed that selected human glioma cell lines also express functional FPR. We therefore investigated the relationship between FPR expression and the biologic behavior of glioma cells.
View Article and Find Full Text PDFWe have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo.
View Article and Find Full Text PDFPurpose: Increasing evidence suggests that interaction between the chemoattractant CXCL12/stromal cell-derived factor-1alpha and its receptor CXCR4 plays a pivotal role in the metastasis of various tumors. Our previous studies showed that multi-component Chinese herbal medicines inhibited the effects of CXCL12/CXCR4. As a result of sequential chromatographic fractionation of one herbal medicine ingredient, Lianqiao (fruit of Forsythia suspensa), we observed that tannins were, at least in part, responsible for this activity.
View Article and Find Full Text PDF