Publications by authors named "Rosalba Moretta"

IgM is the major circulating Ig isotype in teleost fish, showing in Antarctic fish unique features such as an extraordinary long hinge region, which plays a crucial role in antibody structure and function. In this work, we describe the replacement of the hinge region of a murine monoclonal antibody (mAb) with the peculiar hinge from Antarctic fish IgM. We use the CRISPR/Cas9 system as a powerful tool for generating the engineered mAb.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) can be produced by well-assessed synthesis methods and can show a high surface area-to-volume ratio, chemical inertness, high electron density, strong optical absorption as well as low toxicity. AuNPs have been conjugated with many different biomolecules for a wide range of biomedical applications. These applications require an increasingly complex level of surface decoration in order to achieve stability, efficacy, and specific functionalities.

View Article and Find Full Text PDF

This review summarizes the leading advancements in porous silicon (PSi) optical-biosensors, achieved over the past five years. The cost-effective fabrication process, the high internal surface area, the tunable pore size, and the photonic properties made the PSi an appealing transducing substrate for biosensing purposes, with applications in different research fields. Different optical PSi biosensors are reviewed and classified into four classes, based on the different biorecognition elements immobilized on the surface of the transducing material.

View Article and Find Full Text PDF

Peptide nucleic acid (PNA) is a synthetic DNA mimic that outperforms the properties of traditional oligonucleotides (ONs). On account of its outstanding features, such as remarkable binding affinity towards complementary DNA or RNA as well as high thermal and chemical stability, PNA has been proposed as a valuable alternative to the ON probe in gene-sensor design. In this study, a hybrid transducer made-up of graphene oxide (GO) nano-sheets covalently grafted onto a porous silicon (PSi) matrix has been investigated for the early detection of a genetic cardiac disorder, the Brugada syndrome (BS).

View Article and Find Full Text PDF

The development of non-toxic fluorescent agents alternative to heavy metal-based semiconductor quantum dots represents a relevant topic in biomedical research and in particular in the bioimaging field. Herein, highly luminescent Si─H terminal microporous silicon nanoparticles with μs-lived photoemission are chemically modified with a two step process and successfully used as label-free probes for in vivo time-gated luminescence imaging. In this context, Hydra vulgaris is used as model organism for in vivo study and validity assessment.

View Article and Find Full Text PDF

Fresh products are characterized by reduced shelf-life because they are an excellent growth medium for a lot of microorganisms. Therefore, the microbial spoilage causing significant food supply losses has become an enormous economic and ethical problem worldwide. The antimicrobial packaging is offering a viable solution to tackle this economic and safety issue by extending the shelf-life and improving the quality and safety of fresh products.

View Article and Find Full Text PDF

In this study, we report, for the first time, the synthesis of two original nanosystems, based on gold Au(III) and copper Cu(II): simple gold-copper nanoparticles (CuAuNPs) and enriched monopicolinate cyclam (L1)-Cu(II)-Au(III)-complex (L1@CuAuNPs). The two nanomaterials differ substantially by the chelation or not of the Cu(II) ions during the NPs synthesis process. The two hybrid nanoparticles (CuAuNPs; L1@CuAuNPs) were deeply studied from the chemical and physical point of view, using many different analytical techniques such as Raman and UV-vis spectroscopy, electron transmission microscopy, and dynamic light scattering.

View Article and Find Full Text PDF

Aptamers are artificial nucleic acid ligands identified and obtained from combinatorial libraries of synthetic nucleic acids through the in vitro process SELEX (systematic evolution of ligands by exponential enrichment). Aptamers are able to bind an ample range of non-nucleic acid targets with great specificity and affinity. Devices based on aptamers as bio-recognition elements open up a new generation of biosensors called aptasensors.

View Article and Find Full Text PDF

Food packaging is not only a simple protective barrier, but a real "active" component, which is expected to preserve food quality, safety and shelf-life. Therefore, the materials used for packaging production should show peculiar features and properties. Specifically, antimicrobial packaging has recently gained great attention with respect to both social and economic impacts.

View Article and Find Full Text PDF

Graphene oxide (GO) is a two-dimensional material with peculiar photoluminescence emission and good dispersion in water, that make it an useful platform for the development of label-free optical biosensors. In this study, a GO-porous silicon (PSi) hybrid device is realized using a covalent chemical approach in order to obtain a stable support for biosensing applications. Protein A, used as bioprobe for biosensing purposes, is covalently linked to the GO, using the functional groups on its surface, by carbodiimide chemistry.

View Article and Find Full Text PDF