Stress exposure impairs brain structure and function, resulting in cognitive deficits and increased risk for psychiatric disorders such as depression, schizophrenia, anxiety and post-traumatic stress disorder. In particular, stress exposure affects function and structure of hippocampal CA1 leading to impairments in episodic memory. Here, we applied longitudinal deep-brain optical imaging to investigate the link between changes in activity patterns and structural plasticity of dorsal CA1 pyramidal neurons and hippocampal-dependent learning and memory in mice exposed to stress.
View Article and Find Full Text PDFA single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls.
View Article and Find Full Text PDFThe control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification.
View Article and Find Full Text PDFDespite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improve re-establishment of connectivity, but also comprise substantial donor site morbidity. We developed a rat model which allows the testing of different cell applications, i.
View Article and Find Full Text PDFDirect or indirect impairment of breathing in humans by diseases or environmental factors can either cause long-term disability and pain, or can ultimately result in death. Automatic respiratory centers in the brainstem control the highly structured process of breathing and signal to a specialized group of motor neurons in the cervical spinal cord that constitute the phrenic nerves. In mammals, the thoracic diaphragm separates the thorax from the abdomen and adopts the function of the primary respiratory musculature.
View Article and Find Full Text PDFHow are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal.
View Article and Find Full Text PDFCorrect innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles.
View Article and Find Full Text PDFDuring development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele.
View Article and Find Full Text PDFEngrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo.
View Article and Find Full Text PDFThe neuromuscular junctions are the specialized synapses whereby spinal motor neurons control the contraction of skeletal muscles. The formation of the neuromuscular junctions is controlled by a complex interplay of multiple mechanisms coordinately activated in motor nerve terminals and in their target myotubes. However, the transcriptional regulators that control in motor neurons the genetic programs involved in neuromuscular junction development remain unknown.
View Article and Find Full Text PDFDuring development, fibroblast growth factors (FGF) are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2) was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation.
View Article and Find Full Text PDFInteraction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon-axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A-Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood.
View Article and Find Full Text PDFThe initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb.
View Article and Find Full Text PDF