Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2023
The NMDA antagonist ketamine demonstrated a fast antidepressant activity in treatment-resistant depression. Pre-clinical studies suggest that de novo synthesis of the brain-derived neurotrophic factor (BDNF) in the PFC might be involved in the rapid antidepressant action of ketamine. Applying a genetic model of impaired glutamate release, this study aims to further identify the molecular mechanisms that could modulate antidepressant action and resistance to treatment.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
August 2021
Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer.
View Article and Find Full Text PDFSirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.
View Article and Find Full Text PDFCircadian rhythms disturbance is widely observable in patients with major depression (MD) and is also associated with depression vulnerability. Of them, disturbed melatonin secretion rhythm is particularly relevant to MD and is strongly phase-locked to core body temperature (CBT) rhythm. Here we aim to study the specific role of each melatonin receptor (MT and MT) subtype in melatonin regulation of circadian CBT and its possible relationship with depressive-like behaviors.
View Article and Find Full Text PDFThe senescence-accelerated mouse prone-8 (SAMP8) model has been considered as a good model for aged-related cognitive decline and Alzheimer's disease (AD). Since epigenetic alterations represent a crucial mechanism during aging, in the present study we tested whether the inhibition of the histone deacetylase sirtuin 2 (SIRT2) could ameliorate the age-dependent cognitive impairments and associated neuropathology shown by SAMP8 mice. To this end, the potent SIRT2-selective inhibitor, 33i (5 mg/kg i.
View Article and Find Full Text PDFRationale: Antidepressant action has been linked to increased synaptic plasticity in which epigenetic mechanisms such as histone posttranslational acetylation could be involved. Interestingly, the histone deacetylases HDAC5 and SIRT2 are oppositely regulated by stress and antidepressants in mice prefrontal cortex (PFC). Besides, the neuroblastoma SH-SY5Y line is an in vitro neuronal model reliable to study drug effects with clear advantages over animals.
View Article and Find Full Text PDFThe psychopathology of depression is highly complex and the outcome of studies on animal models is divergent. In order to find brain regions that could be metabolically distinctively active across a variety of mouse depression models and to compare the interconnectivity of brain regions of wild-type and such genetically modified mice, histochemical mapping of oxidative metabolism was performed by the measurement of cytochrome oxidase activity. We included mice with the heterozygous knockout of the vesicular glutamate transporter (VGLUT), full knockout of the cannabinoid 1 receptor (CB1), an anti-sense knockdown of the glucocorticoid receptor (GRi) and overexpression of the human 5-hydroxytryptamine transporter (h5-HTT).
View Article and Find Full Text PDFGrowing evidence suggests that changes in histone acetylation in specific sites of the chromatin modulate neuronal plasticity and contribute to antidepressant-like action. Sirtuin 2 (SIRT2) is a class III NAD-dependent histone deacetylase involved in transcriptional repression of genes regulating synaptic plasticity. Importantly, a key role for the glutamate system in prefrontal cortex (PFC) synaptic plasticity changes induced by antidepressants has been suggested.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized phenotypically by memory impairment, histologically by accumulation of pTau and β-amyloid peptide and morphologically by a loss of nerve terminals in cortical and hippocampal regions. As glutamate is the principle excitatory neurotransmitter of the central nervous system (CNS), the glutamatergic system may play an important role in AD. To date, not many studies have addressed the deleterious effects of Aβ on glutamatergic terminals; therefore the aim of this study was to investigate how Aβ affects glutamatergic terminals and to assess the extent to which alterations in the glutamatergic neurotransmission could impact susceptibility to the illness.
View Article and Find Full Text PDFIt is believed that glucocorticoids control the proliferation of neural progenitor cells, and this process is highly involved in mood disorders and cognitive processes. Using the maternal separation model of chronic neonatal stress, it has been found that stress induced depressive-like behavior, cognitive deficits and a decrease in proliferation in the subventricular zone (SVZ). Venlafaxine reversed all deleterious effects of chronic stress by modulating HPA activity.
View Article and Find Full Text PDFThe senescence-accelerated mouse-prone 8 (SAMP8), used as a model of aging, displays many established pathological features of Alzheimer's disease. Cognitive impairments and increased levels of hyperphosphorylated tau are found in the hippocampus of SAMP8 mice along with an increased β-secretase activity and amyloid-β (Aβ) depositions that increase in number and extent with age. Based on a previous study from our laboratory showing an amelioration of cognitive impairments and tau pathology by sildenafil, in this study we tested whether this drug could also modulate the amyloid precursor protein amyloidogenic processing in this mouse model.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common cause of dementia in elderly people. Research focused on identifying compounds that restore cognition and memory in AD patients is a very active investigational pursuit. Cholinesterase inhibitors for the symptomatic treatment of cognitive decline in AD have been in use for more than a decade but provide only modest benefits in most patients.
View Article and Find Full Text PDFThe large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models.
View Article and Find Full Text PDFIt is becoming evident that chronic exposure to stress not only might result in insulin resistance or cognitive deficits, but may also be considered a risk factor for pathologies such as depression or Alzheimer's disease (AD). There is great interest in determining the molecular mechanisms underlying interactions between stress, aging, memory and Alzheimer's disease (AD). We have used the chronic mild stress (CMS) model to study the effects of chronic stress on the aging process and the development of central insulin resistance and AD pathology.
View Article and Find Full Text PDFA causative relationship between inflammation and depression is gradually gaining consistency. Because Nrf2 participates in inflammation, we hypothesized that Nrf2 could play a role in depressive disorders. In this study, we have observed that Nrf2 deletion in mice results in: (i) a depressive-like behavior evaluated as an increase in the immobility time in the tail-suspension test and by a decrease in the grooming time in the splash test, (ii) reduced levels of dopamine and serotonin and increased levels of glutamate in the prefrontal cortex, (iii) altered levels of proteins associated to depression such as VEGF and synaptophysin and (iv) microgliosis.
View Article and Find Full Text PDFUnraveling the mechanisms of 5-HT neuron control might provide new insights into depression pathophysiology. In addition to the inhibitory 5-HT1A autoreceptors, cortico-raphe glutamatergic descending pathways are suggested to modulate 5-HT activity in the DRN. Here we studied how decreased VGLUT1 levels in the brain stem affect glutamate regulation of 5-HT function.
View Article and Find Full Text PDFThe objective of the present work was to study the effects of an early-life stress (maternal separation, MS) in the excitatory/inhibitory ratio as a potential factor contributing to the ageing process, and the purported normalizing effects of chronic treatment with the antidepressant venlafaxine. MS induced depressive-like behaviour in the Porsolt forced swimming test that was reversed by venlafaxine, and that persisted until senescence. Aged MS rats showed a downregulation of vesicular glutamate transporter 1 and 2 (VGlut1 and VGlut2) and GABA transporter (VGAT) and increased expression of excitatory amino acid transporter 2 (EAAT2) in the hippocampus.
View Article and Find Full Text PDFDepression and anxiety are among the leading causes of societal burden. Abnormalities in 5-hydroxytryptamine (5-HT; serotonin) neurotransmission are known to be associated with depressive and anxiety symptoms. The rostral projections of brainstem dorsal (DRN) and median (MRN) raphe nuclei are the main sources of forebrain 5-HT.
View Article and Find Full Text PDFDepression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour.
View Article and Find Full Text PDFRationale: Major depression is a chronic disabling disorder, often preceded by stress. Despite emerging clinical interest in mechanisms perpetuating episodes of depression and/or establishing increased vulnerability for relapse, little attention has been paid to address these aspects in experimental models. Here, we studied the long-term neuroadaptive effects of chronic mild stress (CMS) as well as the effectiveness of a course of an antidepressant treatment.
View Article and Find Full Text PDFThere is much interest in understanding the mechanisms responsible for interactions among stress, aging, memory and Alzheimer's disease. Glucocorticoid secretion associated with early life stress may contribute to the variability of the aging process and to the development of neuro- and psychopathologies. Maternal separation (MS), a model of early life stress in which rats experience 3 h of daily separation from the dam during the first 3 weeks of life, was used to study the interactions between stress and aging.
View Article and Find Full Text PDFAdverse experiences early in life may sensitize specific neurocircuits to subsequent stressors. We have evaluated in maternal separation (MS) rats, an animal paradigm of early-life stress, the effects of a selective cholinergic lesion on cognitive function as well as susceptibility of cholinergic neurons to the lesion. MS rats subjected to a cholinergic lesion by administration of the immunotoxin 192 IgG-saporin, showed significant decreases in both choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity compared to control lesioned rats.
View Article and Find Full Text PDFBackground: Many studies link depression to an increase in the excitatory-inhibitory ratio in the forebrain. Presynaptic alterations in a shared pathway of the glutamate/gamma-aminobutyric acid (GABA) cycle may account for this imbalance. Evidence suggests that decreased vesicular glutamate transporter 1 (VGLUT1) levels in the forebrain affect the glutamate/GABA cycle and induce helpless behavior.
View Article and Find Full Text PDFEarly stressful adverse situations may increase the vulnerability to cognitive deficits and psychiatric disorders, such as depression. Maternal separation (MS) has been used as an animal model to study changes in neurochemistry and behavior associated with exposure to early-life stress. This study investigated the effects of neonatal stress (MS) on the expression of synaptic plasticity markers in the hippocampus and a purported relationship to cognitive processes.
View Article and Find Full Text PDF