There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth.
View Article and Find Full Text PDFIntroduction: Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited.
View Article and Find Full Text PDFCOVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known.
View Article and Find Full Text PDFAt birth, there are 100 billion neurons in the human brain, with functional neural circuits extending through the spine to the epidermis of the feet and toes. Following birth, limbs and vertebrae continue to grow by several orders of magnitude, forcing established axons to grow by up to 200 cm in length without motile growth cones. The leading regulatory paradigm suggests that biomechanical expansion of mitotic tissue exerts tensile force on integrated nervous tissue, which synchronizes ongoing growth of spanning axons.
View Article and Find Full Text PDFCOVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known.
View Article and Find Full Text PDFThe ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival.
View Article and Find Full Text PDFWhole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs.
View Article and Find Full Text PDFDopamine, a key striatal neuromodulator, increases synaptic strength by promoting surface insertion and/or retention of AMPA receptors (AMPARs). This process is mediated by the phosphorylation of the GluA1 subunit of AMPAR by cyclic nucleotide-dependent kinases, making cyclic nucleotide phosphodiesterases (PDEs) potential regulators of synaptic strength. In this study, we examined the role of phosphodiesterase 2 (PDE2), a medium spiny neuron-enriched and cGMP-activated PDE, in AMPAR trafficking.
View Article and Find Full Text PDFUnlabelled: Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments.
View Article and Find Full Text PDFDuring pre-synaptic embryonic development, neuronal processes traverse short distances to reach their targets via growth cone. Over time, neuronal somata are separated from their axon terminals due to skeletal growth of the enlarging organism (Weiss 1941; Gray, Hukkanen et al. 1992).
View Article and Find Full Text PDFThe use of antibody and peptide functionalized semiconductor quantum dots holds considerable potential for specific labeling of target antigens and high resolution optical imaging of biological preparations. Despite this potential, their use in neuroscience is not yet widespread; a number of technical and methodological challenges must still be overcome in order to produce reliable and reproducible labeling protocols. We have optimized and used anti-GFAP functionalized quantum dots for specific labeling of intermediate filaments in astrocyte and Müller glial cells in sections of intact rat neural sensory retina and dissociated primary spinal cord astrocytes.
View Article and Find Full Text PDF