Humans typically represent numbers and quantities along a left-to-right continuum. Early perspectives attributed number-space association to culture; however, recent evidence in newborns and animals challenges this hypothesis. We investigate whether the length of an array of dots influences spatial bias in rhesus macaques.
View Article and Find Full Text PDFDomestic chickens (Gallus gallus) are among those species subject to intensive selection for production. Among the most widely used broiler strains are the Ross308 and the Hybro. From the perspective of animal production, Ross308 were superior to Hybro in weight gain, final body mass, and feed conversion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
The "mental number line" (MNL) is a form of spatial numeric representation that associates small and large numbers with the left and right spaces, respectively. This spatio-numeric organization can be found in adult humans and has been related to cultural factors such as writing and reading habits. Yet, both human newborns and birds order numbers consistently with an MNL, thus raising the question of whether culture is a main explanation for MNL.
View Article and Find Full Text PDFA key signature of small-number processing is the difficulty in discriminating between three and four objects, as reported in infants and animals. Five-day-old chicks overcome this limit if individually distinctive features characterize each object. In this study, we have investigated whether processing individually different face-like objects can also support discrimination between three and four objects.
View Article and Find Full Text PDFThe presence of preverbal numerical abilities in animals and infants is widely established, but an important discussion remains about which cognitive systems support these abilities. In particular, a great amount of research is dedicated to the approximate number system (ANS) for the elaboration of non-symbolic numbers and their possible types of mental numeric representations. In a recently published article, Clarke and Beck (2021) provide a series of evidence that supports its existence (ANS) and argue that the mental referents of this system are both natural and rational numbers.
View Article and Find Full Text PDFActa Psychol (Amst)
June 2022
Francis Galton first reported that humans mentally organize numbers from left to right on a mental number line (1880). This spatial-numerical association was long considered to result from writing and reading habits. More recently though, newborns and animals showed a left-to-right oriented spatial numerical association challenging the primary role assigned to culture in determining the link between number and space.
View Article and Find Full Text PDFAnimals show vast numerical competence in tasks that require both ordinal and cardinal numerical representations, but few studies have addressed whether animals can identify the numerical middle in a sequence. Two rhesus monkeys () learned to select the middle dot in a horizontal sequence of three dots on a touchscreen. When subsequently presented with longer sequences composed of 5, 7 or 9 items, monkeys transferred the middle rule.
View Article and Find Full Text PDFChicks trained to identify a target item in a sagittally-oriented series of identical items show a higher accuracy for the target on the left, rather than that on the right, at test when the series was rotated by 90°. Such bias seems to be due to a right hemispheric dominance in visuospatial tasks. Up to now, the bias was highlighted by looking at accuracy, the measure mostly used in non-human studies to detect spatial numerical association, SNA.
View Article and Find Full Text PDFconcept learning provides a fundamental building block for many cognitive functions in humans. Here we address whether rhesus monkeys (Macaca mulatta) can learn the abstract concept of "middle" in a series of objects. First, we trained monkeys to select the middle dot in a horizontal series of three dots presented on a touchscreen.
View Article and Find Full Text PDFWhen facing two sets of imprinting objects of different numerousness, domestic chicks prefer to approach the larger one. Given that choice for familiar and novel stimuli in imprinting situations is known to be affected by the sex of the animals, we investigated how male and female domestic chicks divide the time spent in the proximity of a familiar versus an unfamiliar number of objects, and how animals interact (by pecking) with these objects. We confirmed that chicks discriminate among the different numerousnesses, but we also showed that females and males behave differently, depending on the degree of familiarity of the objects.
View Article and Find Full Text PDFDay-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1.
View Article and Find Full Text PDFWe associate small numbers with the left and large numbers with the right side of space. Recent evidence from human newborns and non-human animals has challenged the primary role assigned to culture, in determining this spatial numerical association (SNA). Nevertheless, the effect of individual spatial biases has not been considered in previous research.
View Article and Find Full Text PDFDifferent species show an intriguing similarity in representing numerosity in space, starting from left to right. This bias has been attributed to a right hemisphere dominance in processing spatial information. Here, to disentangle the role of each hemisphere in dealing with spatial versus ordinal-numerical information, we tested domestic chicks during monocular versus binocular vision.
View Article and Find Full Text PDFThe use of non-symbolic numerical information is widespread throughout the animal kingdom, providing adaptive benefits in several ecological contexts. Here we provide the possible evidence of ordinal numerical skills in zebrafish (Danio rerio). Zebrafish were trained to identify the second exit in a series of five identically-spaced exits along a corridor.
View Article and Find Full Text PDFHumans represent numbers on a mental number line with smaller numbers on the left and larger numbers on the right side. A left-to-right oriented spatial-numerical association, (SNA), has been demonstrated in animals and infants. However, the possibility that SNA is learnt by early exposure to caregivers' directional biases is still open.
View Article and Find Full Text PDFHumans represent symbolic numbers as oriented from left to right: the mental number line (MNL). Up to now, scientific studies have mainly investigated the MNL by means of response times. However, the existing knowledge on the MNL can be advantaged by studies on motor patterns while responding to a number.
View Article and Find Full Text PDFAnimals can perceive the numerosity of sets of visual elements. Qualitative and quantitative similarities in different species suggest the existence of a shared system (approximate number system). Biases associated with sensory properties are informative about the underlying mechanisms.
View Article and Find Full Text PDFLeibovich et al. argue that it is impossible to control for all continuous magnitudes in a numerical task. We contend that continuous magnitudes (i.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2017
Instead of the scepticism on animal numerical understanding that characterized the first half of the twentieth century, in recent decades, a large and increasing body of the literature has shown that adult animals can master a variety of non-symbolic (in the absence of symbols such as mathematical words) numerical tasks. Nonetheless, evidence proving early numerical abilities in non-human animals was sparse. In this paper, I report the ongoing work to investigate numerical cognition in the day-old domestic chick ().
View Article and Find Full Text PDFA large body of literature shows that non-human animals master numerical discriminations, but a limit has been reported in a variety of species in the comparison 3vs.4. Little is known regarding the possibility of using "cognitive strategies" to enable this discrimination.
View Article and Find Full Text PDFNúñez and Fias raised concerns on whether our results demonstrate a linear number-space mapping. Patro and Nuerk urge caution on the use of animal models to understand the origin (cultural vs. biological) of the orientation of spatial-numerical association.
View Article and Find Full Text PDFIn the past decade hand kinematics has been reliably adopted for investigating cognitive processes and disentangling debated topics. One of the most controversial issues in numerical cognition literature regards the origin - cultural vs. genetically driven - of the mental number line (MNL), oriented from left (small numbers) to right (large numbers).
View Article and Find Full Text PDF