Glioblastoma (GBM) is a very aggressive tumor that presents vascularization, necrosis and is resistant to chemotherapy and radiotherapy. Current treatments are not effective eradicating GBM, thus, there is an urgent need to develop novel therapeutic strategies against GBM. AZD5363, AZD8542, curcumin and resveratrol, are widely studied for the treatment of cancer and in the present study we explored the effects of the administration of combined treatments with AZD5363, AZD8542, curcumin or resveratrol on human GBM cells.
View Article and Find Full Text PDFClinical manifestations of coronavirus disease 2019 (COVID-19) in pregnant women are diverse, and little is known of the impact of the disease on placental physiology. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been detected in the human placenta, and its binding receptor ACE2 is present in a variety of placental cells, including endothelium. Here, we analyze the impact of COVID-19 in placental endothelium, studying by immunofluorescence the expression of von Willebrand factor (vWf), claudin-5, and vascular endothelial (VE) cadherin in the decidua and chorionic villi of placentas from women with mild and severe COVID-19 in comparison to healthy controls.
View Article and Find Full Text PDFIntroduction: Pancreatic carcinoma cells exhibit a pronounced tendency to invade along and through intra and extrapancreatic nerves, even during the early stages of the disease, a phenomenon called perineural invasion (PNI). Thus, we sought to determine the effects of the simultaneous expression of soluble forms of GAS1 and PTEN (tGAS1 and PTEN-L) inhibiting tumor growth and invasiveness.
Materials And Methods: We employed a lentiviral system to simultaneously express tGAS1 and PTEN-L; in order to determine the effects of the treatments, cell viability and apoptosis as well as the expression of the transgenes by ELISA and intracellular signaling as ascertained by the activation of AKT and ERK1/2 were measured; cell invasiveness was determined using a Boyden chamber assay; and the effects of the treatment were measured in vivo in a mouse model.
Cytotherapy
March 2021
Background Aims: Metastasis to different organs is the major cause of death in breast cancer patients. The poor clinical prognosis and lack of successful treatments for metastatic breast cancer patients demand the development of new tumor-selective therapies. Thus, it is necessary to develop treatments capable of releasing therapeutic agents to both primary tumors and metastases that avoid toxic side effects in normal tissue, and neural stem cells are an attractive vehicle for tracking tumor cells and delivering anti-cancer agents.
View Article and Find Full Text PDFThe overexpression of GAS1 (Growth Arrest Specific 1) in glioma cells induces cell cycle arrest and apoptosis. We previously demonstrated that the apoptotic process set off by GAS1 is caused by its capacity to inhibit the Glial cell-derived neurotrophic factor (GDNF)-mediated intracellular survival signaling pathway. Whereas on the other hand, PTEN is a tumor suppressor, inactive in many tumors, and both GAS1 and PTEN inhibit the PI3K/AKT pathway.
View Article and Find Full Text PDFWe previously demonstrated the capacity of GAS1 (Growth Arrest Specific 1) to inhibit the growth of gliomas by blocking the GDNF-RET signaling pathway. Here, we show that a soluble form of GAS1 (tGAS1), decreases the number of viable MDA MB 231 human breast cancer cells, acting in both autocrine and paracrine manners when secreted from producing cells. Moreover, tGAS1 inhibits the growth of tumors implanted in female nu/nu mice through a RET-independent mechanism which involves interfering with the Artemin (ARTN)-GFRα3-(GDNF Family Receptor alpha 3) mediated intracellular signaling and the activation of ERK.
View Article and Find Full Text PDFGrowth Arrest Specific 1 (GAS1) is a protein expressed when cells are arrested and during development. When ectopically expressed, GAS1 induces cell arrest and apoptosis of different cell lines, and we have previously demonstrated that the apoptotic process set off by GAS1 is caused by its capacity inhibiting the GDNF-mediated intracellular survival signaling. In the present work, we have dissected the molecular pathway leading to cell death.
View Article and Find Full Text PDFThe anaerobic biodegradability and inhibitory effects on the methane production of three different surfactants, two anionic: sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant: trialkyl-methylammonium chloride (TMAC), were evaluated with two different anaerobic sludges, granular and flocculent. Five different concentrations of the surfactants, 5, 50, 100, 250 and 500 mg/L, were tested. SLS was biodegraded at concentrations of 5, 50 and 100 mg/L with flocculent sludge and at 100 and 250 mg/L with granular sludge.
View Article and Find Full Text PDFNitric oxide (NO) is an essential messenger molecule in brain, where it is produced in neurons mostly by the activity of the neuronal isoform of nitric oxide synthase (nNOS). To understand the participation of the different isoforms of NOS in physiological functioning and in pathological processes, mice with null mutations for each of the NOS isoforms have been generated. In the present paper, we report that there is a selective protection from oxidative damage in the brain of mice with a targeted disruption of the nNOS gene.
View Article and Find Full Text PDF