Publications by authors named "Rosa Maria Pascale"

Article Synopsis
  • * A retrospective study involving 227 chronically infected patients was conducted, comparing HCC prevalence and outcomes in those treated with DAAs against a historical group treated with peginterferon and ribavirin; findings showed a notable prevalence of 32.75% HCC in DAA patients, with significant differences in curative procedure rates.
  • * The study suggests that even though 3-year
View Article and Find Full Text PDF

The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has limited treatment options. Snail family transcriptional repressor 1 (SNAI1) is a master regulator of epithelial-mesenchymal transition (EMT) and has been implicated in HCC initiation and progression. However, the precise role of SNAI1 and the way it contributes to hepatocarcinogenesis have not been investigated in depth, especially .

View Article and Find Full Text PDF

The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms.

View Article and Find Full Text PDF

Objective: Increased de novo fatty acid (FA) synthesis and cholesterol biosynthesis have been independently described in many tumour types, including hepatocellular carcinoma (HCC).

Design: We investigated the functional contribution of fatty acid synthase (Fasn)-mediated de novo FA synthesis in a murine HCC model induced by loss of Pten and overexpression of c-Met (sgPten/c-Met) using liver-specific knockout mice. Expression arrays and lipidomic analysis were performed to characterise the global gene expression and lipid profiles, respectively, of sgPten/c-Met HCC from wild-type and knockout mice.

View Article and Find Full Text PDF

Unlabelled: Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and is overexpressed in several malignancies, but its expression in hepatocellular carcinoma (HCC) is unknown. Hepatic S-adenosyl methionine (SAMe) levels decrease in methionine adenosyltransferase 1A (Mat1a) knockout (KO) mice, which develop HCC, and in ethanol-fed mice. We examined the regulation of Ubc9 by SAMe in murine liver and human HCC, breast, and colon carcinoma cell lines and specimens.

View Article and Find Full Text PDF

Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans.

View Article and Find Full Text PDF