The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with , were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy.
View Article and Find Full Text PDFHaloarchaea are a group of moderate and extreme halophilic microorganisms, belonging to the Archaea domain, that constitute relevant microbial communities in salty environments like coastal and inland salted ponds, marshes, salty lagoons, etc. They can survive in stress conditions such as high salinity and, therefore, high ionic strength, high doses of ultraviolet radiation (UV), high temperature, and extreme pH values. Consequently, most of the species can be considered polyextremophiles owing to their ability to respond to the multiple extreme conditions characterizing their natural habitats.
View Article and Find Full Text PDFCarotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins.
View Article and Find Full Text PDFThe haloarchaeon synthesizes poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of makes the use of waste as a carbon source for cellular growth and PHA synthesis possible.
View Article and Find Full Text PDFHaloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae.
View Article and Find Full Text PDFDenitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis.
View Article and Find Full Text PDFHalophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation.
View Article and Find Full Text PDFThe advances in molecular biology techniques and omics approaches have made it possible to take giant steps in applied research in life sciences [...
View Article and Find Full Text PDFThe El-Rawda solar saltern, located in North Sinai, Egypt, is formed through the process of water evaporation from the Bradawil lagoon. This evaporation leads to the precipitation of gypsum, halite minerals, and salt flats, which subsequently cover the southern and eastern areas of the lagoon. This study employed the shotgun metagenomic approach, the illumine platform, and bioinformatic tools to investigate the taxonomic composition and functional diversity of halophilic microbial communities in solar saltern.
View Article and Find Full Text PDFAs the association of denitrification with global warming and nitrogen removal from ecosystems has gained attention in recent decades, numerous studies have examined denitrification rates and the distribution of denitrifiers across different environments. In this minireview, reported studies focused on coastal saline environments, including estuaries, mangroves, and hypersaline ecosystems, have been analysed to identify the relationship between denitrification and saline gradients. The analyses of the literature and databases stated the direct effect of salinity on the distribution patterns of denitrifiers.
View Article and Find Full Text PDFClimate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...
View Article and Find Full Text PDFOxidative stress has been linked to the onset and progression of different neoplasia. Antioxidants might help prevent it by modulating biochemical processes involved in cell proliferation. Here, the aim was to evaluate the in vitro cytotoxic effect of Haloferax mediterranei bacterioruberin-rich carotenoid extracts (BRCE) (0-100 µg/ml) in six BC cell lines, representative of the intrinsic phenotypes and a healthy mammary epithelium cell line.
View Article and Find Full Text PDFMarine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions.
View Article and Find Full Text PDFis the model microorganism for the study of the nitrogen cycle in haloarchaea. This archaeon not only assimilate -species such as nitrate, nitrite, or ammonia, but also it can perform denitrification under low oxygen conditions, using nitrate or nitrite as alternative electron acceptors. However, the information currently available on the regulation of this alternative respiration in this kind of microorganism is scarce.
View Article and Find Full Text PDFhas revealed a high bioremediation potential for several inorganic anions (e.g., nitrates and nitrites) and metals from hypersaline waters and brines.
View Article and Find Full Text PDFDeep eutectic solvents (DES) are promising reaction media where interesting catalytic processes can be carried out. In theory, most of these mixtures are environmentally friendly, being an alternative to traditionally pollutant organic solvents used in several processes related to organic chemistry and biotechnology. However, recent studies show contradictory results regarding their toxicity.
View Article and Find Full Text PDFThis work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of ; sp. strain NRS_35 and unclassified sp.
View Article and Find Full Text PDFHaloarchaeal carotenoids have attracted attention lately due to their potential antioxidant activity. This work studies the effect of different concentrations of carbon sources on cell growth and carotenoid production. Carotenoid extract composition was characterized by HPLC-MS.
View Article and Find Full Text PDFExtremophilic microbes show a unique metabolism due to the adaptations they display to deal with extreme environmental parameters characterizing the extreme ecosystems that they inhabit (high salt concentration, high temperatures, and extreme pH values, high exposure to solar radiation etc.). Halophilic microorganisms characterised and isolated from saltmarshes, brines, salted ponds, salty lagoons etc.
View Article and Find Full Text PDFThe biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes.
View Article and Find Full Text PDFHeavy metals are essential micronutrients at low concentrations, serving as cofactors for relevant microbial enzymes (i.e., respiratory nitrate and nitrite reductases NADH dehydrogenase-2, amine oxidase, etc.
View Article and Find Full Text PDFBreast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression.
View Article and Find Full Text PDF