If melatonin or its analogs are to be used therapeutically in humans, their chronic effects on responsiveness of melatonin target cells need to be assessed. We have previously demonstrated that acute melatonin treatment regulates the somatostatinergic system in the rat hippocampus. In the present study, we have investigated the effects of subchronic and chronic daily treatment with melatonin on the somatostatinergic system in the rat hippocampus.
View Article and Find Full Text PDFMelatonin is known to increase neuronal activity in the hippocampus, an effect contrary to that of somatostatin (somatotropin release-inhibiting factor, SRIF). Thus, the aim of this study was to investigate whether the somatostatinergic system is implicated in the mechanism of action of melatonin in the rat hippocampus. One group of rats was injected a single dose of melatonin [25 microg/kg subcutaneously (s.
View Article and Find Full Text PDFMelatonin and somatostatin are known to exert similar effects on locomotor activity. We have previously demonstrated that acute melatonin treatment regulates somatostatin receptor function in the rat frontoparietal cortex. However, the effects of subchronic and chronic melatonin treatment on the somatostatin receptor-G protein-adenylyl cyclase system in the rat frontoparietal cortex are unknown.
View Article and Find Full Text PDF