: Vitamin B12 deficiency can cause variable symptoms, which may be irreversible if not diagnosed and treated in a timely manner. We aimed to develop a widely accepted expert consensus to guide the practice of diagnosing and treating B12 deficiency. : We conducted a scoping review of the literature published in PubMed since January 2003.
View Article and Find Full Text PDFInborn errors of metabolism (IEMs) are a group of more than 1000 inherited diseases that are individually rare but have a cumulative global prevalence of 50 per 100,000 births. Recently, it has been recognized that like common diseases, patients with rare diseases can greatly vary in the manifestation and severity of symptoms. Here, we review omics-driven approaches that enable an integrated, holistic view of metabolic phenotypes in IEM patients.
View Article and Find Full Text PDFBackground: MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies.
View Article and Find Full Text PDFEpigenetic diseases can be produced by a stable alteration, called an epimutation, in DNA methylation, in which epigenome alterations are directly involved in the underlying molecular mechanisms of the disease. This review focuses on the epigenetics of two inherited metabolic diseases, epi-cblC, an inherited metabolic disorder of cobalamin (vitamin B) metabolism, and alpha-thalassemia type α-ZF, an inherited disorder of α2-globin synthesis, with a particular interest in the role of aberrant antisense transcription of flanking genes in the generation of epimutations in CpG islands of gene promoters. In both disorders, the epimutation is triggered by an aberrant antisense transcription through the promoter, which produces an H3K36me3 histone mark involved in the recruitment of DNA methyltransferases.
View Article and Find Full Text PDFInherited disorders of cobalamin (cbl) metabolism (cblA-J) result in accumulation of methylmalonic acid (MMA) and/or homocystinuria (HCU). Clinical presentation includes ophthalmological manifestations related to retina, optic nerve and posterior visual alterations, mainly reported in cblC and sporadically in other cbl inborn errors.We searched MEDLINE EMBASE and Cochrane Library, and analyzed articles reporting ocular manifestations in cbl inborn errors.
View Article and Find Full Text PDFMethyl-Cobalamin (Cbl) derives from dietary vitamin B and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions.
View Article and Find Full Text PDFBackground & Aims: Nutritional predisposition to severe coronavirus disease 2019 (COVID-19) remains unclear. Zinc deficiency could be critical since it is associated with a higher susceptibility to infections. We evaluated the prevalence of hypozincemia in the early stage of COVID-19, its association with risk factors for severe COVID-19 and its prognostic value for hospitalization for respiratory complications within 10 days.
View Article and Find Full Text PDFPhenylketonuria is the most common inborn error of metabolism and causes irreversible mental retardation if left untreated. Its newborn screening was made possible by the technique of blood collection on filter paper developed by Robert Guthrie. Neonatal PKU screening began in France in the early 1970s.
View Article and Find Full Text PDFScope: Vitamin B12 and folate (methyl donors) deficiency is frequent during pregnancy. Experimental rat models with methyl donor deficit during pregnancy and lactation (Initial methyl donor deficit (iMDD)) produce impaired myocardium fatty acid oxidation and mitochondrial energy metabolism at weaning.
Methods And Results: The consequences of iMDD on heart of rat pups under normal diet after weaning and high fat diet (HF) between day (D) 50 and D185 are investigated.
Background: Many arguments suggest that neutrophils could play a prominent role in COVID-19. However, the role of key components of neutrophil innate immunity in severe forms of COVID-19 has deserved insufficient attention. We aimed to evaluate the involvement of neutrophil elastase, histone-DNA, and DNases in systemic and multi-organ manifestations of COVID-19.
View Article and Find Full Text PDFNon-alcoholic fat liver disease (NAFLD) is the most common chronic liver disease in the world. NAFLD is a spectrum of diseases ranging from simple steatosis to hepatic carcinoma. The complexity of pathomechanisms makes treatment difficult.
View Article and Find Full Text PDFSirtuin1 (Sirt1) has a NAD (+) binding domain and modulates the acetylation status of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and Fork Head Box O1 transcription factor (Foxo1) according to the nutritional status. Sirt1 is decreased in obese patients and increased in weight loss. Its decreased expression explains part of the pathomechanisms of the metabolic syndrome, diabetes mellitus type 2 (DT2), cardiovascular diseases and nonalcoholic liver disease.
View Article and Find Full Text PDF