Publications by authors named "Rosa Maria Correra"

Heterogeneity of lymphatic vessels during embryogenesis is critical for organ-specific lymphatic function. Little is known about lymphatics in the developing kidney, despite their established roles in pathology of the mature organ. We performed three-dimensional imaging to characterize lymphatic vessel formation in the mammalian embryonic kidney at single-cell resolution.

View Article and Find Full Text PDF

The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish.

View Article and Find Full Text PDF

Pw1/Peg3 is an imprinted gene expressed from the paternally inherited allele. Several imprinted genes, including Pw1/Peg3, have been shown to regulate overall body size and play a role in adult stem cells. Pw1/Peg3 is expressed in muscle stem cells (satellite cells) as well as a progenitor subset of muscle interstitial cells (PICs) in adult skeletal muscle.

View Article and Find Full Text PDF

Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown.

View Article and Find Full Text PDF

Parental imprinting is a mammalian-specific form of epigenetic regulation in which one allele of a gene is silenced depending on its parental origin. Parentally imprinted genes have been shown to play a role in growth, metabolism, cancer, and behavior. Although the molecular mechanisms underlying parental imprinting have been largely elucidated, the selective advantage of silencing one allele remains unclear.

View Article and Find Full Text PDF

Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility.

View Article and Find Full Text PDF