Alzheimers Dement
May 2022
The COVID-19 pandemic has disproportionately affected more vulnerable populations, including those living with dementia. Over 50 million individuals worldwide are living with Alzheimer's disease (AD) or other dementia, and it is crucial to continue the fight against the condition during the global pandemic. Since the start of mandated lockdowns in March 2020, charity and non-profit organizations that fund AD and related dementia research continue to respond to the needs of the AD research community, ensuring the momentum continues and accelerates.
View Article and Find Full Text PDFThe reproducibility of laboratory experiments is fundamental to the scientific process. There have been increasing reports regarding challenges in reproducing and translating preclinical experiments in animal models. In Alzheimer's disease and related dementias, there have been similar reports and growing interest from funding organizations, researchers, and the broader scientific community to set parameters around experimental design, statistical power, and reporting requirements.
View Article and Find Full Text PDFThe annual Alzheimer's Research UK (ARUK) Conference was hosted by the Manchester and North West Network Centre on March 8-9, 2016. In this report, we provide a summary of the research presented.
View Article and Find Full Text PDFDefective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles.
View Article and Find Full Text PDFOn 10-11 March 2015 University College London hosted the annual Alzheimer's Research UK Conference. This report provides an overview of the presentations and discussions that took place.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known.
View Article and Find Full Text PDFMitochondria and the endoplasmic reticulum (ER) form tight structural associations and these facilitate a number of cellular functions. However, the mechanisms by which regions of the ER become tethered to mitochondria are not properly known. Understanding these mechanisms is not just important for comprehending fundamental physiological processes but also for understanding pathogenic processes in some disease states.
View Article and Find Full Text PDFMutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease.
View Article and Find Full Text PDFMutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance.
View Article and Find Full Text PDF