Publications by authors named "Rosa M Gutierrez-Rios"

Marine sediments constitute the world's most substantial long-term carbon repository. The microorganisms dwelling in these sediments mediate the transformation of fixed oceanic carbon, but their contribution to the carbon cycle is not fully understood. Previous culture-independent investigations into sedimentary microorganisms have underscored the significance of carbohydrates in the carbon cycle.

View Article and Find Full Text PDF

strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in is still poorly understood.

View Article and Find Full Text PDF

Background: After the initial outbreak in China (December 2019), the World Health Organization declared COVID-19 a pandemic on March 11, 2020. This paper aims to describe the first 2 years of the pandemic in Mexico.

Design And Methods: This is a population-based longitudinal study.

View Article and Find Full Text PDF

Purpose: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented.

View Article and Find Full Text PDF

Background: The modification of glucose import capacity is an engineering strategy that has been shown to improve the characteristics of Escherichia coli as a microbial factory. A reduction in glucose import capacity can have a positive effect on production strain performance, however, this is not always the case. In this study, E.

View Article and Find Full Text PDF

In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.

View Article and Find Full Text PDF

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.

View Article and Find Full Text PDF

The search for novel biosurfactants (Bs) requires the isolation of microorganisms from different environments. The Gulf of Mexico (GoM) is a geographical area active in the exploration and exploitation of hydrocarbons. Recent metagenomic and microbiologic studies in this area suggested a potential richness for novel Bs microbial producers.

View Article and Find Full Text PDF
Article Synopsis
  • The Gulf of Mexico (GoM) is constantly influenced by hydrocarbon compounds, shaping its microbial community composition.
  • A metagenomic study revealed differences in microbial composition and metabolic capabilities between the north-west and south-east regions of the GoM, reflecting the delicate balance of biogeochemical cycles.
  • Both regions exhibit a rich diversity of genes related to sulfur, nitrogen, and hydrocarbon metabolism, indicating the GoM's potential for bioremediation through aerobic and anaerobic hydrocarbon degradation processes.
View Article and Find Full Text PDF

Objectives: Like many other proteins, those belonging to the signal transduction cascade initiating sporulation (Spo0 pathway) have conserved protein domains (Capra and Laub in Annu Rev Microbiol 66:325-47, 2012). Improvements in bioinformatics applications to discover proteins involved in the initiation of the sporulating cascade in newly sequenced genomes is an important task that requires rigorous comparative genomic methods and manual curation to identify endospore-forming bacteria. This note aims to present a collection of predicted proteins involved in the Spo0 pathway found in the proteomes of fully sequenced and manually curated endospore-forming Firmicutes species.

View Article and Find Full Text PDF

ZM4 is an ethanol-producing microbe that is constitutively tolerant to this solvent. For a better understanding of the ethanol tolerance phenomenon we obtained and characterized two ZM4 mutants (ER79ap and ER79ag) with higher ethanol tolerance than the wild-type. Mutants were evaluated in different ethanol concentrations and this analysis showed that mutant ER79ap was more tolerant and had a better performance in terms of cell viability, than the wild-type strain and ER79ag mutant.

View Article and Find Full Text PDF

Marine sediments are an example of one of the most complex microbial habitats. These bacterial communities play an important role in several biogeochemical cycles in the marine ecosystem. In particular, the Gulf of Mexico has a ubiquitous concentration of hydrocarbons in its sediments, representing a very interesting niche to explore.

View Article and Find Full Text PDF

Metagenomics research has recently thrived due to DNA sequencing technologies improvement, driving the emergence of new analysis tools and the growth of taxonomic databases. However, there is no all-purpose strategy that can guarantee the best result for a given project and there are several combinations of software, parameters and databases that can be tested. Therefore, we performed an impartial comparison, using statistical measures of classification for eight bioinformatic tools and four taxonomic databases, defining a benchmark framework to evaluate each tool in a standardized context.

View Article and Find Full Text PDF

One of the most commonly used tools to compare protein or DNA sequences against databases is BLAST. We introduce a web tool that allows the performance of BLAST-searches of protein/DNA sequences in whole-genome sequenced bacteria/archaea, and displays a large amount of BLAST-results simultaneously. The circular bacterial replicons are projected as horizontal lines with fixed length of 360, representing the degrees of a circle.

View Article and Find Full Text PDF

The CRISPR-Cas system is involved in bacterial immunity, virulence, gene regulation, biofilm formation and sporulation. In Salmonella enterica serovar Typhi, this system consists of five transcriptional units including antisense RNAs. It was determined that these genetic elements are expressed in minimal medium and are up-regulated by pH.

View Article and Find Full Text PDF

Background: Efficient production of SA in Escherichia coli has been achieved by modifying key genes of the central carbon metabolism and SA pathway, resulting in overproducing strains grown in batch- or fed-batch-fermentor cultures using a complex broth including glucose and YE. In this study, we performed a GTA to identify those genes significantly upregulated in an engineered E. coli strain, PB12.

View Article and Find Full Text PDF

Recent evidence suggests that most influenza A virus gene segments can contribute to the pathogenicity of the virus. In this regard, the hemagglutinin (HA) subtype of the circulating strains has been closely surveyed, but the reassortment of internal gene segments is usually not monitored as a potential source of an increased pathogenicity. In this work, an oligonucleotide DNA microarray (PhyloFlu) designed to determine the phylogenetic origins of the eight segments of the influenza virus genome was constructed and validated.

View Article and Find Full Text PDF

Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms.

View Article and Find Full Text PDF

Background: During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses.

View Article and Find Full Text PDF

Extensive genomic studies on gene duplication in model organisms such as Escherichia coli and Saccharomyces cerevisiae have recently been undertaken. In these models, it is commonly considered that a duplication event may include a transcription factor (TF), a target gene, or both. Following a gene duplication episode, varying scenarios have been postulated to describe the evolution of the regulatory network.

View Article and Find Full Text PDF

Background: Glucose is the preferred carbon and energy source for Bacillus subtilis and Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzymatic activities, in response to the presence of this sugar. We present a comparison of the cellular response to glucose in these two model organisms, using an approach combining global transcriptome and regulatory network analyses.

View Article and Find Full Text PDF

repABC plasmids are widely distributed among alpha-proteobacteria. They are especially common in Rhizobiales. Some strains of this bacterial order can contain multiple repABC replicons indicating that this plasmid family includes several incompatibility groups.

View Article and Find Full Text PDF

Background: Glucose is the preferred carbon and energy source for Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzyme activities in response to the presence of this sugar. To determine the extent of the cellular response to glucose, we applied an approach combining global transcriptome and regulatory network analyses.

View Article and Find Full Text PDF

The transcriptional network of Escherichia coli is currently the best-understood regulatory network of a single cell. Motivated by statistical evidence, suggesting a hierarchical modular architecture in this network, we identified eight modules with well-defined physiological functions. These modules were identified by a clustering approach, using the shortest path to trace regulatory relationships across genes in the network.

View Article and Find Full Text PDF