Background: Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δ and oFV- vectors to test the efficiency and stability of viral/CD19 spread.
View Article and Find Full Text PDFThrough GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5).
View Article and Find Full Text PDFIn multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 () gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus.
View Article and Find Full Text PDFOncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2022
Background: Acute kidney injury (AKI) is both a consequence and determinant of outcomes in COVID-19. The kidney is one of the major organs infected by the causative virus, SARS-CoV-2. Viral entry into cells requires the viral spike protein, and both the virus and its spike protein appear in the urine of COVID-19 patients with AKI.
View Article and Find Full Text PDFWe here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system.
View Article and Find Full Text PDFOncolytic virus therapy leads to immunogenic death of virus-infected tumor cells and this has been shown in preclinical models to enhance the cytotoxic T-lymphocyte response against tumor-associated antigens (TAAs), leading to killing of uninfected tumor cells. To investigate whether oncolytic virotherapy can increase immune responses to tumor antigens in human subjects, we studied T-cell responses against a panel of known myeloma TAAs using PBMC samples obtained from ten myeloma patients before and after systemic administration of an oncolytic measles virus encoding sodium iodide symporter (MV-NIS). Despite their prior exposures to multiple immunosuppressive antimyeloma treatment regimens, T-cell responses to some of the TAAs were detectable even before measles virotherapy.
View Article and Find Full Text PDFNew immuno-oncology therapies are improving cancer treatments beyond the former standard of care, as evidenced by the recent and continuing clinical approvals for immunotherapies in a broad range of indications. However, a majority of patients (particularly those with immunologically cold tumors) still do not benefit, highlighting the need for rational combination approaches. Oncolytic viruses (OV) both directly kill tumor cells and inflame the tumor microenvironment.
View Article and Find Full Text PDFImmunotherapy for HPV malignancies is attractive because well-defined, viral, non-self tumor antigens exist as targets. Several approaches to vaccinate therapeutically against HPV E6 and E7 antigens have been adopted, including viral platforms such as VSV. A major advantage of VSV expressing these antigens is that VSV also acts as an oncolytic virus, leading to direct tumor cell killing and induction of effective anti-E6 and anti-E7 T cell responses.
View Article and Find Full Text PDFMultiple sclerosis (MS) is considered a T cell-mediated autoimmune disease, although several evidences also demonstrate a B cell involvement in its etiology. Follicular T helper (Tfh) cells, a CXCR5-expressing CD4+ T cell subpopulation, are essential in the regulation of B cell differentiation and maintenance of humoral immunity. Alterations in circulating (c)Tfh distribution and/or function have been associated with autoimmune diseases including MS.
View Article and Find Full Text PDFUnderstanding how incompletely cleared primary tumors transition from minimal residual disease (MRD) into treatment-resistant, immune-invisible recurrences has major clinical significance. We show here that this transition is mediated through the subversion of two key elements of innate immunosurveillance. In the first, the role of TNFα changes from an antitumor effector against primary tumors into a growth promoter for MRD.
View Article and Find Full Text PDFPurpose: The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy.
View Article and Find Full Text PDFBackground: Systemic delivery of a complementary cDNA library expressed from the vesicular stomatitis virus (VSV) treats tumors by vaccinating against a wide range of tumor associated antigens (TAAs). For subcutaneous B16 melanomas, therapy was achieved using a specific combination of self-TAAs (neuroblastoma-Ras, cytochrome c, and tyrosinase-related protein 1) expressed from VSV. However, for intracranial B16 tumors, a different combination was therapeutic (consisting of VSV-expressed hypoxia-inducible factor [HIF]-2α, Sox-10, c-Myc, and tyrosinase-related protein 1).
View Article and Find Full Text PDFPreviously, we showed that vesicular stomatitis virus (VSV) engineered to express a cDNA library from human melanoma cells (ASMEL, Altered Self Melanoma Epitope Library) was an effective systemic therapy to treat subcutaneous (s.c.) murine B16 melanomas.
View Article and Find Full Text PDFTumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence.
View Article and Find Full Text PDFAggressive regrowth of recurrent tumors following treatment-induced dormancy represents a major clinical challenge for treatment of malignant disease. We reported previously that recurrent prostate tumors, which underwent complete macroscopic regression followed by aggressive regrowth, could be cured with a vesicular stomatitis virus (VSV)-expressed cDNA library derived from recurrent tumor cells. By screening the protective, recurrence-derived VSV-cDNA library, here we identify topoisomerase-IIα (TOPO-IIα) as a recurrence-specific tumor antigen against which tolerance can be broken.
View Article and Find Full Text PDFA human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system.
View Article and Find Full Text PDFInjection of oncolytic vesicular stomatitis virus (VSV) into established B16ova melanomas results in tumor regression, in large part by inducing innate immune reactivity against the viral infection, mediated by MyD88- and type III interferon (IFN)-, but not TLR-4-, signaling. We show here that intratumoral (IT) treatment with lipopolysaccharide (LPS), a TLR-4 agonist, significantly enhanced the local therapy induced by VSV by combining activation of different innate immune pathways. Therapy was further enhanced by co-recruiting a potent antitumor, adaptive T-cell response by using a VSV engineered to express the ovalbumin tumor-associated antigen ova, in combination with LPS.
View Article and Find Full Text PDFOncolytic virotherapy offers the potential to treat tumors both as a single agent and in combination with traditional modalities such as chemotherapy and radiotherapy. Here we describe an effective, fully systemic treatment regimen, which combines virotherapy, acting essentially as an adjuvant immunotherapy, with adoptive cell transfer (ACT). The combination of ACT with systemic administration of a vesicular stomatitis virus (VSV) engineered to express the endogenous melanocyte antigen glycoprotein 100 (gp100) resulted in regression of established melanomas and generation of antitumor immunity.
View Article and Find Full Text PDFAn antitumor T-cell response can lead to tumor control without clearing all tumor cells. As long as residual tumor cells remain, there is a constant risk of escape from that T-cell response. We previously showed that adoptive transfer of anti-ova OT-I T cells into B16ova-bearing mice led to tumor regression followed by escape of tumors that had lost the ova gene, rendering the OT-I T cells ineffective.
View Article and Find Full Text PDFMultiple intravenous injections of a cDNA library, derived from human melanoma cell lines and expressed using the highly immunogenic vector vesicular stomatitis virus (VSV), cured mice with established melanoma tumors. Successful tumor eradication was associated with the ability of mouse lymphoid cells to mount a tumor-specific CD4(+) interleukin (IL)-17 recall response in vitro. We used this characteristic IL-17 response to screen the VSV-cDNA library and identified three different VSV-cDNA virus clones that, when used in combination but not alone, achieved the same efficacy against tumors as the complete parental virus library.
View Article and Find Full Text PDFEffective cancer immunotherapy requires the release of a broad spectrum of tumor antigens in the context of potent immune activation. We show here that a cDNA library of normal tissue, expressed from a highly immunogenic viral platform, cures established tumors of the same histological type from which the cDNA library was derived. Immune escape occurred with suboptimal vaccination, but tumor cells that escaped the immune pressure were readily treated by second-line virus-based immunotherapy.
View Article and Find Full Text PDFWe have shown that the antitumor activity of vesicular stomatitis virus (VSV) against B16ova tumors in C57BL/6 mice is predominantly due to innate antiviral immune effectors. We have also shown that the innate immune-activating properties of VSV can be harnessed to prime adaptive T-cell responses against a tumor-associated antigen (TAA) if the virus is engineered to express the cDNA of the antigen. Here, we show that the combination of VSV expressing OVA as a model tumor antigen, along with adoptive T-cell therapy targeted against the same antigen, is superior to either treatment alone and induces systemic antitumor activity.
View Article and Find Full Text PDFIntroduction: Chronic myeloid leukemia is the first malignant disease to be associated with a genetic lesion and is the first leukemia to provide a genotype model conducive to targeted molecular therapy. It is a chronic clonal myeloproliferative disorder, originating in a pluripotent stem cell common to all three hematopoietic lineages, characterized by overproduction of myeloid cells in all stages of maturation. Approval of the use of imatinib in the United States in 2001 and its introduction in the treatment of chronic myeloid leukemia changed the evolution and prognosis of the disease and began the era of molecular therapy for malignancies.
View Article and Find Full Text PDF