Publications by authors named "Rosa Leon Zayas"

Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae .

View Article and Find Full Text PDF

Halogenated estrogens are formed during chlorine-based wastewater disinfection and have been detected in wastewater treatment plant effluent; however, very little is known about their susceptibility to biodegradation in natural waters. To better understand the biodegradation of free and halogenated estrogens in a large river under environmentally relevant conditions, we measured estrogen kinetics in aerobic microcosms containing water and sediment from the Willamette River (OR, USA) at two concentrations (50 and 1250 ng L). Control microcosms were used to characterize losses due to sorption and other abiotic processes, and microbial dynamics were monitored using 16S rRNA gene sequencing and ATP.

View Article and Find Full Text PDF

The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortunately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET.

View Article and Find Full Text PDF

Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic polymer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associated with PET degradation.

View Article and Find Full Text PDF

Oil reservoirs contain microbial populations that are both autochthonously and allochthonously introduced by industrial development. These microbial populations are greatly influenced by external factors including, but not limited to, salinity and temperature. In this study, we used metagenomics to examine the microbial populations within five wells of the same hydrocarbon reservoir system in the Gulf of Mexico.

View Article and Find Full Text PDF

The benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared within the ecosystem of sediments, seagrasses and reef fish. In this study, we hypothesize that coral reef and seagrass environments share members of the microbial community that are rare in some habitats and enriched in others, and that animals may integrate this connectivity.

View Article and Find Full Text PDF

Oil reservoirs have been shown to house numerous microbial lineages that differ based on the in-situ pH, salinity and temperature of the subsurface environment. Lineages of Firmicutes, including Clostridiales, have been frequently detected in oil reservoirs, but are typically not considered impactful or relevant due to their spore-forming nature. Here we show, using metagenomics, a high temperature oil reservoir of marine salinity contains a microbial population that is predominantly from within the Order Clostridiales.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the diversity and metabolic capabilities of archaea in marine subsurface sediments from the Costa Rica margin, revealing 31 metagenome-assembled genomes (MAGs) across six different archaeal lineages.
  • It highlights the potential for Lokiarchaeota to anaerobically degrade hydrocarbons, suggesting potential symbiotic relationships with bacteria that use nitrate, nitrite, and sulfite.
  • Additionally, it describes the Bathyarchaeota lineage's unique incomplete methanogenesis pathway and its potential link between methanogenic and acetogenic processes, enhancing our understanding of marine benthic archaea.
View Article and Find Full Text PDF

The McMurdo Dry Valleys (MDV) in Antarctica harbor a diverse assemblage of mat-forming diazotrophic cyanobacteria that play a key role in nitrogen cycling. Prior research showed that heterotrophic diazotrophs also make a substantial contribution to nitrogen fixation in MDV. The goals of this study were to survey autotrophic and heterotrophic diazotrophs across the MDV to investigate factors that regulate the distribution and relative ecological roles of each group.

View Article and Find Full Text PDF

Here, we report the annotated draft genome sequences of three spp. and two spp. that, as consortia, degrade polyethylene terephthalate plastic.

View Article and Find Full Text PDF

Candidate phyla (CP) are broad phylogenetic clusters of organisms that lack cultured representatives. Included in this fraction is the candidate Parcubacteria superphylum. Specific characteristics that have been ascribed to the Parcubacteria include reduced genome size, limited metabolic potential and exclusive reliance on fermentation for energy acquisition.

View Article and Find Full Text PDF

Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf).

View Article and Find Full Text PDF

Hadal ecosystems are found at a depth of 6,000 m below sea level and below, occupying less than 1% of the total area of the ocean. The microbial communities and metabolic potential in these ecosystems are largely uncharacterized. Here, we present four single amplified genomes (SAGs) obtained from 8,219 m below the sea surface within the hadal ecosystem of the Puerto Rico Trench (PRT).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh6420uennasj49agmq8p9tc3irhbc4r1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once