: The ability to predict a long duration of mechanical ventilation (MV) by clinicians is very limited. We assessed the value of machine learning (ML) for early prediction of the duration of MV > 14 days in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). : This is a development, testing, and external validation study using data from 1173 patients on MV ≥ 3 days with moderate-to-severe ARDS.
View Article and Find Full Text PDFCrit Care Med
December 2023
Objectives: To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS).
Design: A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts.
Setting: A network of multidisciplinary ICUs.
Mortality is a frequently reported outcome in clinical studies of acute respiratory distress syndrome (ARDS). However, timing of mortality assessment has not been well characterized. We aimed to identify a crossing-point between cumulative survival and death in the intensive care unit (ICU) of patients with moderate-to-severe ARDS, beyond which the number of survivors would exceed the number of deaths.
View Article and Find Full Text PDFIntroduction: In patients with acute respiratory distress syndrome (ARDS), the PaO2/FiO2 ratio at the time of ARDS diagnosis is weakly associated with mortality. We hypothesized that setting a PaO2/FiO2 threshold in 150 mm Hg at 24 h from moderate/severe ARDS diagnosis would improve predictions of death in the intensive care unit (ICU). Methods: We conducted an ancillary study in 1303 patients with moderate to severe ARDS managed with lung-protective ventilation enrolled consecutively in four prospective multicenter cohorts in a network of ICUs.
View Article and Find Full Text PDFObjectives: To establish the epidemiological characteristics, ventilator management, and outcomes in patients with acute hypoxemic respiratory failure (AHRF), with or without acute respiratory distress syndrome (ARDS), in the era of lung-protective mechanical ventilation (MV).
Design: A 6-month prospective, epidemiological, observational study.
Setting: A network of 22 multidisciplinary ICUs in Spain.
Objectives: To develop a scoring model for stratifying patients with acute respiratory distress syndrome into risk categories (Stratification for identification of Prognostic categories In the acute RESpiratory distress syndrome score) for early prediction of death in the ICU, independent of the underlying disease and cause of death.
Design: A development and validation study using clinical data from four prospective, multicenter, observational cohorts.
Setting: A network of multidisciplinary ICUs.
Purpose: We hypothesized that neurally adjusted ventilatory assist (NAVA) compared to conventional lung-protective mechanical ventilation (MV) decreases duration of MV and mortality in patients with acute respiratory failure (ARF).
Methods: We carried out a multicenter, randomized, controlled trial in patients with ARF from several etiologies. Intubated patients ventilated for ≤ 5 days expected to require MV for ≥ 72 h and able to breathe spontaneously were eligible for enrollment.
Background: There is no proven specific pharmacological treatment for patients with the acute respiratory distress syndrome (ARDS). The efficacy of corticosteroids in ARDS remains controversial. We aimed to assess the effects of dexamethasone in ARDS, which might change pulmonary and systemic inflammation and result in a decrease in duration of mechanical ventilation and mortality.
View Article and Find Full Text PDFObjectives: Incomplete or ambiguous evidence for identifying high-risk patients with acute respiratory distress syndrome for enrollment into randomized controlled trials has come at the cost of an unreasonable number of negative trials. We examined a set of selected variables early in acute respiratory distress syndrome to determine accurate prognostic predictors for selecting high-risk patients for randomized controlled trials.
Design: A training and testing study using a secondary analysis of data from four prospective, multicenter, observational studies.
Objectives: Overall mortality in patients with acute respiratory distress syndrome is a composite endpoint because it includes death from multiple causes. In most acute respiratory distress syndrome trials, it is unknown whether reported deaths are due to acute respiratory distress syndrome or the underlying disease, unrelated to the specific intervention tested. We investigated the causes of death after contracting acute respiratory distress syndrome in a large cohort.
View Article and Find Full Text PDFObjectives: The driving pressure (plateau pressure minus positive end-expiratory pressure) has been suggested as the major determinant for the beneficial effects of lung-protective ventilation. We tested whether driving pressure was superior to the variables that define it in predicting outcome in patients with acute respiratory distress syndrome.
Design: A secondary analysis of existing data from previously reported observational studies.
Background: Patient-ventilator asynchrony is a common problem in mechanically ventilated patients with acute respiratory failure. It is assumed that asynchronies worsen lung function and prolong the duration of mechanical ventilation (MV). Neurally Adjusted Ventilatory Assist (NAVA) is a novel approach to MV based on neural respiratory center output that is able to trigger, cycle, and regulate the ventilatory cycle.
View Article and Find Full Text PDFBackground: Although much has evolved in our understanding of the pathogenesis and factors affecting outcome of patients with acute respiratory distress syndrome (ARDS), still there is no specific pharmacologic treatment for ARDS. Several clinical trials have evaluated the utility of corticoids but none of them has demonstrated a definitive benefit due to small sample sizes, selection bias, patient heterogeneity, and time of initiation of treatment or duration of therapy. We postulated that adjunctive treatment of persistent ARDS with intravenous dexamethasone might change the pulmonary and systemic inflammatory response and thereby reduce morbidity, leading to a decrease in duration of mechanical ventilation and a decrease in mortality.
View Article and Find Full Text PDFObjectives: Although there is general agreement on the characteristic features of the acute respiratory distress syndrome, we lack a scoring system that predicts acute respiratory distress syndrome outcome with high probability. Our objective was to develop an outcome score that clinicians could easily calculate at the bedside to predict the risk of death of acute respiratory distress syndrome patients 24 hours after diagnosis.
Design: A prospective, multicenter, observational, descriptive, and validation study.
Objectives: A recent update of the definition of acute respiratory distress syndrome (ARDS) proposed an empirical classification based on ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO₂/FiO₂) at ARDS onset. Since the proposal did not mandate PaO₂/FiO₂ calculation under standardised ventilator settings (SVS), we hypothesised that a stratification based on baseline PaO₂/FiOv would not provide accurate assessment of lung injury severity.
Design: A prospective, multicentre, observational study.
Objective: Current in-hospital mortality of the acute respiratory distress syndrome (ARDS) is above 40%. ARDS outcome depends on the lung injury severity within the first 24 hours of ARDS onset. We investigated whether two widely accepted cutoff values of PaO2/FIO2 and positive end-expiratory pressure (PEEP) would identify subsets of patients with ARDS for predicting outcome and guiding therapy.
View Article and Find Full Text PDFPurpose: The PaO2/FiO2 is an integral part of the assessment of patients with acute respiratory distress syndrome (ARDS). The American-European Consensus Conference definition does not mandate any standardization procedure. We hypothesized that the use of PaO2/FiO2 calculated under a standard ventilatory setting within 24 h of ARDS diagnosis allows a more clinically relevant ARDS classification.
View Article and Find Full Text PDFObjectives: The incidence and outcome of the acute respiratory distress syndrome in children are not well-known, especially under current ventilatory practices. The goal of this study was to determine the incidence, etiology, and outcome of acute respiratory distress syndrome in the pediatric population in the setting of lung protective ventilation.
Design: A 1-yr, prospective, multicenter, observational study in 12 geographical areas of Spain (serving a population of 3.
Purpose: While our understanding of the pathogenesis and management of acute respiratory distress syndrome (ARDS) has improved over the past decade, estimates of its incidence have been controversial. The goal of this study was to examine ARDS incidence and outcome under current lung protective ventilatory support practices before and after the diagnosis of ARDS.
Methods: This was a 1-year prospective, multicenter, observational study in 13 geographical areas of Spain (serving a population of 3.