Water-soluble [P,O]Ni(II) catalysts enable the direct catalytic nonalternating copolymerization of fundamental comonomers ethylene and carbon monoxide (CO) in water as an environmentally friendly reaction medium. This yields stable aqueous dispersions of high molecular weight polyethylene containing ∼1 mol % of largely isolated in-chain keto groups in the form of particles with sizes between 100 nm and 1 μm. The intermediate species of chain growth resulting from incorporation of polar comonomers are amenable to specific chain termination pathways in conjunction with water.
View Article and Find Full Text PDFPolyethylenes endowed with low densities of in-chain hydrolyzable and photocleavable groups can improve their circularity and potentially reduce their environmental persistency. We show with model polymers derived from acyclic diene metathesis polymerization that the simultaneous presence of both groups has no adverse effect on the polyethylene crystal structure and thermal properties. Post-polymerization Baeyer-Villiger oxidation of keto-polyethylenes from non-alternating catalytic ethylene-CO chain growth copolymerization yield high molecular weight in-chain keto-ester polyethylenes (M ≈50.
View Article and Find Full Text PDF