Publications by authors named "Rosa Giraldez-Perez"

Fragile X Syndrome (FXS) is associated with intellectual disability, hyperactivity, social anxiety and signs of autism. Hyperactivation of NADPH oxidase has been previously described in the brain of the male -KO mouse. This work aims to demonstrate the efficacy of Apocynin, a specific NADPH oxidase inhibitor, in treating Fragile X mouse hallmarks.

View Article and Find Full Text PDF

Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity.

View Article and Find Full Text PDF

Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of , and to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier.

View Article and Find Full Text PDF

Different gold nanosystems covered with DNA and doxorubicin (Doxo) were designed and synthesized for cancer therapy, starting from Au@16-Ph-16 cationic nanoparticles and DNA-Doxo complexes prepared under saturation conditions. For the preparation of stable, biocompatible, and small-sized compacted Au@16-Ph-16/DNA-Doxo nanotransporters, the conditions for the DNA-Doxo compaction process induced by gold nanoparticles were first explored using fluorescence spectroscopy, circular dichroism and atomic force microscopy techniques. The reverse process, which is fundamental for Doxo liberation at the site of action, was found to occur at higher C concentrations using these techniques.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a serious public health problem worldwide which, according to the World Health Organization (WHO), requires research into new and more effective drugs. In this work, both gold nanoparticles covered with 16-3-16 cationic gemini surfactant (Au@16-3-16) and DNA/tetracycline (DNA/TC) intercalated complexes were prepared to effectively transport tetracycline (TC). Synthesis of the Au@16-3-16 precursor was carried out by using trihydrated gold, adding sodium borohydride as a reducing agent and the gemini surfactant 16-3-16 as stabilizing agent.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are promising drug targets for obesity and metabolic disorders. Recently, miRNA mimics are providing a unique mechanism of action that guides the process for drug development and sets out the context of their therapeutic application. miRNA (miR)-21 expression in white adipose tissue (WAT) has been associated with obesity.

View Article and Find Full Text PDF

Investigation and optimization of lysozyme (Lys) adsorption onto gold nanoparticles, AuNPs, were carried out. The purpose of this study is to determine the magnitude of the AuNPs-lysozyme interaction in aqueous media by simple spectrophotometric means, and to obtain the free energy of binding of the system for the first time. In order to explore the possibilities of gold nanoparticles for sensing lysozyme in aqueous media, the stability of the samples and the influence of the gold and nanoparticle concentrations in the detection limit were studied.

View Article and Find Full Text PDF

In equine reproduction, accurate and timely detection of the moment of ovulation is of great importance. Power Doppler ultrasound technology is a non-invasive method that enables to assess the morpho-echogenic features and blood flow changes during the estral cycle in mares. The objective of the present study was to evaluate the influence of age on ultrasonographic parameters (follicular diameter, follicular blood flow-FBF, corpus luteum (CL) area and corpus luteum blood flow-CLBF) and blood plasma progesterone concentrations in cycling Spanish Purebred mares (15 less than 8 years old and 15 equal o higher than 8 years old).

View Article and Find Full Text PDF

The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA-5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV-visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques.

View Article and Find Full Text PDF

Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF.

View Article and Find Full Text PDF

Electrogenerated chemiluminescence (ECL) efficiencies, redox potentials, photoluminescent (PL) (quenching and coupling) effects, and AFM images for the [Ru(bpy)]/Au@tiopronin system were determined in aqueous solutions of the gold nanoparticles (NPs) at pH 7.0. The most remarkable finding was that ECL measurements can display the nanoparticle-induced resonance energy transfer (NP-RET) effect.

View Article and Find Full Text PDF

The effect of the addition of low concentrations of an inner electrolyte on ds-DNA CT-DNA (calf thymus DNA) and ss-DNA conformational changes induced by small N-(2-mercaptopropionyl)glycine gold nanoparticles (AuNPs) is here studied in detail by using different spectroscopic and structural techniques. The high affinity of ss-DNA to AuNPs compared with ds-DNA is easily demonstrated by the results of competitive binding with SYBR Green I (SG). Additionally, it is proven that at 25.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity-related metabolic diseases are linked to issues with how adipose tissue (AT) handles lipids and inflammation, potentially influenced by gut-derived lipopolysaccharides (LPSs).
  • A study involving 33 obesity patients revealed that those with higher LPS levels showed decreased expression of essential AT function and lipogenesis genes and increased inflammatory gene expression.
  • In vitro experiments confirmed that LPS contributes to AT inflammation and disrupts key gene expressions related to lipid handling, suggesting metabolic endotoxemia negatively affects AT physiology in human obesity.
View Article and Find Full Text PDF

Parkinson's disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly understood.

View Article and Find Full Text PDF

A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes a Mendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ∼20% differential risk in the general population.

View Article and Find Full Text PDF

The general organization of cholinergic and nitrergic elements in the central nervous system seems to be highly conserved among vertebrates, with the involvement of these neurotransmitter systems now well established in sensory, motor and cognitive processing. The goldfish is a widely used animal model in neuroanatomical, neurophysiological, and behavioral research. The purpose of this study was to examine pallial and subpallial cholinoceptive, cholinergic and nitrergic populations in the goldfish telencephalon by means of histochemical and immunohistochemical techniques in order to identify neurons containing acetylcholinesterase (AChE), choline acetyltransferase (ChAT), NADPH-diaphorase (NADPHd), and neuronal nitric oxide synthase (nNOS), and to relate their distribution to their putative functional significance.

View Article and Find Full Text PDF
Article Synopsis
  • Fragile X syndrome (FXS) is linked to the absence of the Fmr1 gene, leading to differences in calcium-binding protein expression in the dorsal thalamus of Fmr1 knockout mice.
  • A significant reduction in calbindin-immunoreactive cells was found in male knockout mice, unlike females, who showed no significant differences compared to wildtype.
  • The study highlights the potential impact of decreased calbindin levels in certain thalamic nuclei on behavioral assessments in FXS mouse models, particularly regarding memory and social behaviors.
View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-β1 (TGF-β1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade.

View Article and Find Full Text PDF

This work investigates the nitrergic and cholinergic systems in the brain and spinal cord of the goldfish (Carassius auratus). We studied the immunohistochemical localization of antibodies against the neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) by bright-field and confocal microscopy. Nitrergic and cholinergic cells were segregated within the telencephalon, in both dorsal and ventral areas, and co-distributed in some nuclei of the diencephalon, mesencephalon, rhombencephalon, and spinal cord.

View Article and Find Full Text PDF

The nitrergic system has been inferred from cells positive to nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and/or to the neuronal isoform of nitric oxide synthase (nNOS) immunohistochemistry in different species of vertebrates. The aim of the present work was to systematically study the distribution of cell producing nitric oxide in the goldfish (Carassius auratus) brain. To reach this goal, we firstly studied co-localization for NADPHd and nNOS techniques and demonstrated an extensive double labeling.

View Article and Find Full Text PDF