Amino acid replacement mutations in certain CLL stereotyped B-cell receptor (BCR) immunoglobulins (IGs) at defined positions within antigen-binding sites strongly imply antigen selection. Prime examples of this are CLL subset 4 BCR IGs using IGHV4-34/IGHD5-18/IGHJ6 and IGKV2-30/IGKJ2 rearrangements. Conspicuously and unlike most CLL IGs, subset 4 IGs do not bind apoptotic cells.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is an incurable leukemia of unknown etiology. Multiple studies suggest that the structure of the variable domains of the surface IGs on these cells, and signaling through them, play key roles in developing the disease. Hence, CLL appears to be driven by antigen-BCR interactions, and identifying the selecting antigens involved in this process is an important goal.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is a clonal disease of B lymphocytes manifesting as an absolute lymphocytosis in the blood. However, not all lymphocytoses are leukemic. In addition, first-degree relatives of CLL patients have an ~15 % chance of developing a precursor condition to CLL termed monoclonal B cell lymphocytosis (MBL), and distinguishing CLL and MBL B lymphocytes from normal B cell expansions can be a challenge.
View Article and Find Full Text PDFB-cell chronic lymphocytic leukemia (B-CLL) patients expressing unmutated immunoglobulin heavy variable regions (IGHVs) use the IGHV1-69 B cell receptor (BCR) in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences.
View Article and Find Full Text PDFFor antigen recognition, lampreys use leucine-rich repeats (LRR) instead of immunoglobulin V-(D)-J domains to generate variable lymphocyte receptors (VLR) of three types, VLRA, VLRB, and VLRC. VLRB-bearing lymphocytes respond to immunization with proliferation and differentiation into plasmacytes that secrete multivalent VLRB antibodies. Here we immunized lampreys with B cells from patients with chronic lymphocytic leukemia (CLL) to generate recombinant monoclonal VLRB antibodies, one of which, VLR39, was specific for the donor CLL cells.
View Article and Find Full Text PDFB-cell chronic lymphocytic leukemia (B-CLL) is characterized by the clonal expansion of CD5-expressing B lymphocytes that produce mAbs often reactive with microbial or autoantigens. Long-term culture of B-CLL clones would permit the collection and characterization of B-CLL mAbs to study antigen specificity and of B-CLL DNA to investigate molecular mechanisms promoting the disease. However, the derivation of long-term cell lines (eg, by EBV), has not been efficient.
View Article and Find Full Text PDFMany B-cell chronic lymphocytic leukemia (CLL) monoclonal antibodies (mAbs) can be grouped into subsets based on nearly identical stereotyped sequences. Subset 6 CLL mAbs recognize nonmuscle myosin heavy chain IIA (MYHIIA). Herein, we report that during apoptosis, MYHIIA becomes exposed on the cell surface of a subgroup of apoptotic cells, allowing subset 6 CLL mAbs to bind with it.
View Article and Find Full Text PDFDespite a wealth of information about the structure of surface membrane immunoglobulin (smIg) on chronic lymphocytic leukemia (CLL) cells, little is known about epitopes reacting with their binding sites. Probing phage-displayed peptide libraries, we identified and characterized mimetopes for Igs of 4 patients with IGHV mutated CLL (M-CLL) and 4 with IGHV unmutated CLL (U-CLL). Six of these mAbs were representatives of stereotyped B-cell receptors characteristic of CLL.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) represents the outgrowth of a CD5(+) B cell. Its etiology is unknown. The structure of membrane Ig on CLL cells of unrelated patients can be remarkably similar.
View Article and Find Full Text PDFLeukemic B lymphocytes of a large group of unrelated chronic lymphocytic leukemia (CLL) patients express an unmutated heavy chain immunoglobulin variable (V) region encoded by IGHV1-69, IGHD3-16, and IGHJ3 with nearly identical heavy and light chain complementarity-determining region 3 sequences. The likelihood that these patients developed CLL clones with identical antibody V regions randomly is highly improbable and suggests selection by a common antigen. Monoclonal antibodies (mAbs) from this stereotypic subset strongly bind cytoplasmic structures in HEp-2 cells.
View Article and Find Full Text PDFSince its discovery in follicular lymphoma cells at the breakpoint t(14;18), Bcl-2 has been studied extensively in many basic and clinical science settings. Bcl-2 can locate as an integral mitochondrial membrane component, where its primary role is to block apoptosis by maintaining membrane integrity. Here we show that Bcl-2 also can position on the outer cell surface membrane of B cells from patients with chronic lymphocytic leukemia (B-CLL) and certain other leukemias that do not classically possess the chromosomal breakpoint t(14;18).
View Article and Find Full Text PDF