The fungal cell wall building processes are the ultimate determinants of hyphal shape. In the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper.
View Article and Find Full Text PDFChitin, one of the most important carbohydrates of the fungal cell wall, is synthesized by chitin synthases (CHS). Seven sequences encoding CHSs have been identified in the genome of Neurospora crassa. Previously, CHS-1, -3 and -6 were found at the Spitzenkörper(Spk) core and developing septa.
View Article and Find Full Text PDFMost models for fungal growth have proposed a directional traffic of secretory vesicles to the hyphal apex, where they temporarily aggregate at the Spitzenkörper before they fuse with the plasma membrane (PM). The PM H(+)-translocating ATPase (PMA-1) is delivered via the classical secretory pathway (endoplasmic reticulum [ER] to Golgi) to the cell surface, where it pumps H(+) out of the cell, generating a large electrochemical gradient that supplies energy to H(+)-coupled nutrient uptake systems. To characterize the traffic and delivery of PMA-1 during hyphal elongation, we have analyzed by laser scanning confocal microscopy (LSCM) strains of Neurospora crassa expressing green fluorescent protein (GFP)-tagged versions of the protein.
View Article and Find Full Text PDF