Publications by authors named "Rory Ma"

The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge.

View Article and Find Full Text PDF

Crystalline systems consisting of small-molecule building blocks have emerged as promising materials with diverse applications. It is of great importance to characterize not only their static structures but also the conversion of their structures in response to external stimuli. Femtosecond time-resolved crystallography has the potential to probe the real-time dynamics of structural transitions, but, thus far, this has not been realized for chemical reactions in non-biological crystals.

View Article and Find Full Text PDF

The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 m grown in an ultrahigh vacuum chamber.

View Article and Find Full Text PDF

Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described.

View Article and Find Full Text PDF

We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)] (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (MC) which exhibits a lifetime of about 300 ps.

View Article and Find Full Text PDF

We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)] how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation.

View Article and Find Full Text PDF

X-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a chemical called dimethyl disulfide to learn how another chemical bond, called a disulfide bond, reacts when light hits it.
  • They used a special tool to see how these reactions happen very quickly, and found some interesting changes that occur in just a few billionths of a second.
  • The researchers discovered that some specific chemical parts, like methylthiyl and methylperthiyl, are formed during the reaction, which helps show how complex reactions happen with disulfide bonds when light is involved.
View Article and Find Full Text PDF

It is imperative to suppress the rate of recombination of photogenerated carriers to improve the semiconductor-catalyzed solar-driven production of hydrogen. To this end, photocatalysts comprising active sunlight-harvesting photo-absorbers and stable metal co-catalysts have attracted significant attention. However, the size, clean surface, and highly dispersed nature of the metal co-catalysts are crucial factors affecting catalyst performance and reaction rate.

View Article and Find Full Text PDF

Semiconductor-based photocatalysis is a green method for the removal of toxic organic pollutants by decomposition into harmless products. However, traditional single-component semiconductors are unable to reach high degradation efficiencies due to excessive photo charge carrier recombination. The use of hybrid nanocomposite photocatalysts is a promising strategy for overcoming this problem by reducing recombination as well as ensuring that large amounts of solar energy are harvested.

View Article and Find Full Text PDF

Solar-driven photocatalytic hydrogen evolution is important to bring solar-energy-to-fuel energy-conversion processes to reality. However, there is a lack of highly efficient, stable, and non-precious photocatalysts, and catalysts not designed completely with expensive noble metals have remained elusive, which hampers their large-scale industrial application. Herein, for the first time, a highly efficient and stable noble-metal-free CdS/WS -MoS nanocomposite was designed through a facile hydrothermal approach.

View Article and Find Full Text PDF

Four different bright yellow to orange hydroxy-substituted chalcones (i.e., 2',4-di-hydroxy (1), 2',3',4-trihydroxy (2), 2',3',4'-trihydroxy (3), and 2'-hydroxy-4-methoxy (4) chalcones) were synthesized and characterized by LC-MS, FT-IR, FT-Raman, and fluorescence spectroscopy and thermogravimetric analysis.

View Article and Find Full Text PDF