Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy.
View Article and Find Full Text PDFHookworm infections cause a neglected tropical disease (NTD) affecting ~740 million people worldwide, principally those living in disadvantaged communities. Infections can cause high morbidity due to their impact on nutrient uptake and their need to feed on host blood, resulting in a loss of iron and protein, which can lead to severe anaemia and impaired cognitive development in children. Currently, only one drug, albendazole is efficient to treat hookworm infection and the scientific community fears the rise of resistant strains.
View Article and Find Full Text PDFRecent advances in the field of host immunity against parasitic nematodes have revealed the importance of macrophages in trapping tissue migratory larvae. Protective immune mechanisms against the rodent hookworm Nippostrongylus brasiliensis (Nb) are mediated, at least in part, by IL-4-activated macrophages that bind and trap larvae in the lung. However, it is still not clear how host macrophages recognize the parasite.
View Article and Find Full Text PDFIn Hookworm infection, neutrophils have long had the image of the villain, being recruited to the site of larval migration because of damage but participating themselves in tissue injury. With recent developments in neutrophil biology, there is an increasing body of evidence for the role of neutrophils as effector cells in hookworm immunity. In particular, their ability to release extracellular traps, or neutrophil extracellular traps (NETs), confer neutrophils a larvicidal activity.
View Article and Find Full Text PDFHelminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations.
View Article and Find Full Text PDF