Publications by authors named "Rory A More O'Ferrall"

Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of "positive" hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol.

View Article and Find Full Text PDF

Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells.

View Article and Find Full Text PDF

Rate constants for acid-catalyzed dehydration of cis-2-substituted 1,2-dihydro-naphthols are well correlated by the Taft relationship log k = -0.49 - 8.8σ(I), with minor negative deviations for OH and OMe.

View Article and Find Full Text PDF

Cis- and trans-1,2-dihydrodiol isomers of benzene undergo acid-catalyzed dehydration to form phenol. In principle the isomeric substrates react through a common β-hydroxybenzenium (cyclohexadienyl) carbocation. Notwithstanding, the isomers show a large difference in reactivity, k(cis)/k(trans) = 4500.

View Article and Find Full Text PDF

Measurements of pK(R) show that the cycloheptadienyl cation is less stable than the cyclohexadienyl (benzenium) cation by 18 kcal mol(-1). This difference is ascribed here to "hyperaromaticity" of the latter. For the cycloheptadienyl cation a value of K(R) = [ROH][H(+)]/[R(+)] is assigned by combining a rate constant for reaction of the cation with water based on the azide clock with a rate constant for the acid-catalyzed formation of the cation accompanying equilibration of cycloheptadienol with its trifluoroethyl ether in TFE-water mixtures.

View Article and Find Full Text PDF

Acid-catalyzed dehydrations of substituted naphthalene-cis-1,2-dihydrodiols occur with loss of the 1- or 2-OH group to form 2- and 1-naphthols, respectively. Effects of substituents MeO, Me, H, F, Br, I, and CN at 3-, 6-, and 7-positions of the naphthalene ring are consistent with rate-determining formation of β-hydroxynaphthalenium ion (carbocation) intermediates. For reaction of the 1-hydroxyl group the 3-substituents are correlated by the Yukawa-Tsuno relationship with ρ = -4.

View Article and Find Full Text PDF

Thermodynamic stabilities of 92 carbenes, singlets and triplets, have been evaluated on the basis of hydrogenation enthalpies calculated at the G3MP2 level. The carbenes include alkyl-, aryl-, and heteroatom-substituted structures as well as cyclic 1,3-diheteroatom carbenes. Over a wide energy range, a good correlation is seen between the singlet-triplet gaps and the hydrogenation enthalpies of the singlets, but there are some clear outliers, which represent cases where the triplet has unusual stability or instability.

View Article and Find Full Text PDF

Solvolysis of trichloroacetate esters of 2-methoxy-1,2-dihydro-1-naphthols shows a remarkably large difference in rates between the cis and trans isomers, k(cis)/k(trans) = 1800 in aqueous acetonitrile. This mirrors the behaviour of the acid-catalysed dehydration of cis- and trans-naphthalene-1,2-dihydrodiols to form 2-naphthol, for which k(cis)/k(trans) = 440, but contrasts with that for solvolysis of tetrahydronaphthalene substrates, 1-chloro-2-hydroxy-1,2,3,4-tetrahydronaphthalenes, for which k(cis)/k(trans) = 0.5.

View Article and Find Full Text PDF

Benzene-cis- and trans-1,2-dihydrodiols undergo acid-catalyzed dehydration at remarkably different rates: k(cis)/k(trans) = 4500. This is explained by formation of a β-hydroxycarbocation intermediate in different initial conformations, one of which is stabilized by hyperconjugation amplified by an aromatic no-bond resonance structure (HOC(6)H(6)(+) ↔ HOC(6)H(5) H(+)). MP2 calculations and an unfavorable effect of benzoannelation on benzenium ion stability, implied by pK(R) measurements of -2.

View Article and Find Full Text PDF

A study of the enolization of phenylacetylpyrazine (PzCOCH(2)Ph) catalyzed by acid, base and metal ions in aqueous solution shows, unusually, that metal ions are more effective catalysts than protons, e.g., for zinc k(Zn)/k(H) = 600.

View Article and Find Full Text PDF

Rate and equilibrium measurements for the hydrolysis of the Fe(CO)3-coordinated cyclohexadienyl cation lead to pKR = 4.7 compared with pKR = -2.1 for the uncoordinated ion.

View Article and Find Full Text PDF

cis-Dihydrodiol metabolites have been isolated from naphthalene and six 2-substituted naphthalene substrates. Their structures and absolute configurations have been determined by a combination of calculated (TDDFT) and experimentally based circular dichroism (CD) and optical rotation (OR) methods. The "inverse" styrene helicity rule is shown to be incorrect for the interpretation of the CD spectra of cis-dihydrodiols.

View Article and Find Full Text PDF

Aqueous solvolyses of acyl derivatives of hydrates (water adducts) of anthracene and benzofuran yield carbocations which undergo competitive deprotonation to form the aromatic molecules and nucleophilic reaction with water to give the aromatic hydrates. Trapping experiments with azide ions yield rate constants k(p) for the deprotonation and k(H2O) for the nucleophilic reaction based on the "azide clock". Combining these with rate constants for (a) the H(+)-catalyzed reaction of the hydrate to form the carbocation and (b) hydrogen isotope exchange of the aromatic molecule (from the literature) yields pK(R) = -6.

View Article and Find Full Text PDF

Equilibrium constants (K(de)) are reported for the dehydration of hydrates of benzene, naphthalene, phenanthrene, and anthracene. Free energies of formation of the hydrates (DeltaG(o) (f)(aq)) are derived by combining free energies of formation of the parent (dihydroaromatic) hydrocarbon with estimates of the increment in free energy (DeltaG(OH)) accompanying replacement of a hydrogen atom of the hydrocarbon by a hydroxyl group. Combining these in turn with free energies of formation of H(2)O and of the aromatic hydrocarbon products furnishes the desired equilibrium constants.

View Article and Find Full Text PDF