Publications by authors named "Roque Saltaren"

In underwater environments, ensuring people's safety is complicated, with potentially life-threatening outcomes, especially when divers have to work in deeper conditions. To improve the available solutions for working with robots in this kind of environment, we propose the validation of a control strategy for robots when taking objects from the seabed. The control strategy proposed is based on acceleration feedback in the model of the system.

View Article and Find Full Text PDF

Exploration of the seabed may be complex, and different parameters must be considered for a robotic system to achieve tasks in this environment, such as soil characteristics, seabed gait, and hydrodynamic force in this extreme environment. This paper presents a gait simulation of a quadrupedal robot used on a typical terrigenous sediment seabed, considering the mechanical properties of the type of soil, stiffness, and damping and friction coefficients, referenced with the specialized literature and applied in a computational multibody model with many experimental data in a specific underwater environment to avoi hydrodynamic effects. The requirements of the positions and torque in the robot's active joints are presented in accordance with a 5R mechanism for the leg and the natural pattern shown in the gait of a dog on the ground.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses the development of ALICE, a robotics platform designed for analyzing and improving gait patterns through a wearable exoskeleton and a muscle-driven simulator.
  • ALICE addresses the issue of variability in movement kinetics among individuals, aiming to enhance personalized rehabilitation strategies.
  • By utilizing a combination of real patient data and advanced sensor technology, ALICE seeks to advance the diagnosis and treatment of gait abnormalities in conditions like multiple sclerosis.
View Article and Find Full Text PDF

Hydrodynamic coefficients are essential for the development of underwater robots; in particular, for their design and navigation control. To obtain these coefficients, several techniques exist. These methods are usually experimental, but, more recently, some have been designed by a combination of experiments with computational methods based on Computational Fluid Dynamics (CFD).

View Article and Find Full Text PDF

In this research, the dynamic walking of a legged robot in underwater environments is proposed. For this goal, the underwater zero moment point (Uzmp) is proposed in order to generate the trajectory of the centre of the mass of the robot. Also, the underwater zero moment point auxiliary (Uzmp aux.

View Article and Find Full Text PDF

Cable-driven parallel robots with a redundant configuration have infinite solutions for their cable tension distribution to provide a specific wrench to the end-effector. Redundancy is commonly used to increase the workspace and stiffness or to achieve secondary objectives like energetic minimization or additional movements. This article presents a method based on energy distribution to handle the redundancy of cable-driven parallel robots.

View Article and Find Full Text PDF

In this article, a new method was developed to measure the velocity of a fluid using a sensor, based on the use of a spherical parallel mechanism with three degrees-of-freedom (DOF). This sensor transforms the kinetic energy of the fluid into potential energy by deforming the parallel mechanism. This deformation is due to the impact of the fluid on a sphere attached to the platform of the parallel mechanism.

View Article and Find Full Text PDF

Redundancy in cable-driven parallel robots provides additional degrees of freedom that can be used to achieve different objectives. In this robot, this degree of freedom is used to act on a reconfigurable end effector with one degree of freedom. A compliant actuator actuated by one motor exerts force on both bodies of the platform.

View Article and Find Full Text PDF

This study introduces the concept design and analysis of a robotic system for the assistance and rehabilitation of disabled people. Based on the statistical data of the most common types of disabilities in Spain and other industrialized countries, the different tasks that the device must be able to perform have been determined. In this study, different robots for rehabilitation and assistance previously introduced have been reviewed.

View Article and Find Full Text PDF

Background: Current robotic orientation surgical devices used to be large, in order to cover the needed workspace and to be rigid enough to resist the forces that occur during surgery. The disadvantages of the large size of the devices are the ergonomics, collisions and interference with the surgeons. This paper presents the first steps that have been carried out on the development of a small spherical wrist for laparoscopic applications.

View Article and Find Full Text PDF