Publications by authors named "Roque Minari"

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects millions worldwide, particularly in Latin America. Despite its prevalence, treatment options remain limited.

View Article and Find Full Text PDF

The use of biopolymers as an alternative to petroleum-based polymers offers a sustainable solution with benefits such as biodegradability and unique functionalities. In this study, starch/zein bioparticles (BPs) obtained by nanoprecipitation were employed to synthesize acrylic polymer/biopolymer waterborne nanoparticles with excellent film formation capability. These hybrid nanoparticle dispersions were obtained through a semibatch emulsion polymerization using the previously synthesized BPs as seed and variable monomeric formulations composed of butyl acrylate and methyl methacrylate.

View Article and Find Full Text PDF

The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated.

View Article and Find Full Text PDF

Oral protein delivery holds significant promise as an effective therapeutic strategy for treating a wide range of diseases. However, effective absorption of proteins faces challenges due to biological barriers such as harsh conditions of the stomach and the low permeability of mucous membranes. To address these challenges, this article presents a novel nano-in-nano platform designed for enteric protein delivery.

View Article and Find Full Text PDF

Deep Eutectic Solvents (DES) are a new class of ionic conductive compounds attracting significant attention as greener alternatives to costly ionic liquids. Herein, we developed novel mixed ionic-electronic conducting materials by simple mixing of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and various DES as additives. The DES addition induces the supramolecular assembly and gelification of PEDOT:PSS forming eutectogels triggered by extensive hydrogen bonding and charge stabilization.

View Article and Find Full Text PDF

There is an actual need for developing materials for wound healing applications with anti-inflammatory, antioxidant, or antibacterial properties in order to improve the healing performance. In this work, we report the preparation and characterization of soft and bioactive iongel materials for patches, based on polymeric poly(vinyl alcohol) (PVA) and four ionic liquids containing the cholinium cation and different phenolic acid anions, namely cholinium salicylate ([Ch][Sal]), cholinium gallate ([Ch][Ga]), cholinium vanillate ([Ch][Van]), and cholinium caffeate ([Ch][Caff]). Within the iongels, the phenolic motif in the ionic liquids plays a dual role, acting as a PVA crosslinker and a bioactive compound.

View Article and Find Full Text PDF

The design of ultratough hydrogels has recently emerged as a topic of great interest in the scientific community due to their ability to mimic the features of biological tissues. An outstanding strategy for preparing these materials relies on reversible and dynamic cross-links within the hydrogel matrix. In this work, inspired by the composition of ascidians' tunic, stretchable supramolecular hydrogels combining poly(vinyl alcohol), green tea-derived gallic acid, and rigid tannic acid-coated cellulose nanocrystals (TA@CNC) were designed.

View Article and Find Full Text PDF

Natural deep eutectics solvents (NADES), owing to their high solvation capacity and nontoxicity, are actively being sought for many technological applications. Herein, we report a series of novel NADES based on choline chloride and plant-derived polyphenols. Most of the obtained phenolic NADES have a wide liquid range and high thermal stability above 150 °C.

View Article and Find Full Text PDF

Iongels are soft ionic conducting materials, usually composed of polymer networks swollen with ionic liquids (ILs), which are being investigated for applications ranging from energy to bioelectronics. The employment of iongels in bioelectronic devices such as bioelectrodes or body sensors has been limited by the lack of biocompatibility of the ILs and/or polymer matrices. In this work, we present iongels prepared from solely biocompatible materials: (i) a biobased polymer network containing tannic acid as a cross-linker in a gelatin matrix and (ii) three different biocompatible cholinium carboxylate ionic liquids.

View Article and Find Full Text PDF

Transcutaneous immunization (TCI) provides a valuable alternative approach to conventional vaccination because of the high accessibility and the exceptional immunological characteristics of the skin, but its application is limited by the low permeability of the stratum corneum. Although nanogels (NGs) have proven to enhance skin penetration of macromolecules with minimum damage, their use in TCI remains almost unexplored. In this context, this article evaluates the performance of novel film-forming NGs (FF-NGs) as TCI.

View Article and Find Full Text PDF

After several decades of development in the field of near-infrared (NIR) dyes for photothermal therapy (PTT), indocyanine green (ICG) still remains the only FDA-approved NIR contrast agent. However, upon NIR light irradiation ICG can react with molecular oxygen to form reactive oxygen species and degrade the ICG core, losing the convenient dye properties. In this work, we introduce a new approach for expanding the application of ICG in nanotheranostics, which relies on the confinement of self-organized J-type aggregates in hydrophobic protein domains acting as monomer depots.

View Article and Find Full Text PDF

Iongels have attracted much attention over the years as ion-conducting soft materials for applications in several technologies including stimuli-responsive drug release and flexible (bio)electronics. Nowadays, iongels with additional functionalities such as electronic conductivity, self-healing, thermo-responsiveness, or biocompatibility are actively being searched for high demanding applications. In this work, a simple and rapid synthetic pathway to prepare elastic and thermoreversible iongels is presented.

View Article and Find Full Text PDF

In this work, we report the synthesis of graft copolymers based on casein and N-isopropylacrylamide, which can self-assemble into biodegradable micelles of approximately 80 nm at physiological conditions. The obtained copolymers were degraded by trypsin, an enzyme that is overexpressed in several malignant tumors. Moreover, graft copolymers were able to load doxorubicin (Dox) by ionic interaction with the casein component.

View Article and Find Full Text PDF

Supramolecular hydrogels have promising applications in a wide variety of fields including 3D bioprinting, sensors and actuators, biomedicine, and controlled drug delivery. This communication reports the facile reversible thermotriggered formation of novel pH-responsive supramolecular hydrogels based on poly(vinyl alcohol) (PVA) bonded via dynamic H-bridge with small phenolic biomolecules. PVA and phenolic compounds form a clear solution when they are physically mixed in water at high temperature, but a fast gelation is produced at room temperature through multiple strong H-bonding interactions.

View Article and Find Full Text PDF

Elastomeric poly-ester materials have extraordinary potential for soft tissue engineering applications. In connection, in the last 10 years, cross-linkable oligo-(polyethylene glycol fumarate)s emerged as promising materials for obtaining hydrogels for bone tissue engineering applications. In this work we prepared a new family of photo-curable poly-(ethylene glycol)-fumarate elastomers with controlled structural composition.

View Article and Find Full Text PDF

Transdermal immunization is highly attractive because of the skin's accessibility and unique immunological characteristics. However, it remains a relatively unexplored route of administration because of the great difficulty of transporting antigens past the outermost layer of skin, the stratum corneum. In this article, the abilities of three poly( N-vinylcaprolactam) (PVCL)-based thermoresponsive assemblies-PVCL hydrogels and nanogels plus novel film forming PVCL/acrylic nanogels-to act as protein delivery systems were investigated.

View Article and Find Full Text PDF

Among other uses, latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase. However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session38urhact54cmo1ifnmm6i7umurcq371j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once