We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.
View Article and Find Full Text PDFWe discuss the effect of second harmonic generation via the Čerenkov-like process in nonlinear bulk media and waveguides. We show that in both schemes the Čerenkov harmonic emission represents in fact a nonlinear Bragg diffraction process. It is therefore possible, for the first time, to describe the bulk and waveguide Čerenkov emission uniformly by considering the spatial modulation of the second-order nonlinear polarization.
View Article and Find Full Text PDFWe study second harmonic generation via nonlinear Raman-Nath diffraction in an optical superlattice that maintains a periodic modulation of the second-order nonlinear coefficient χ((2)) in transverse direction but undergoes random modulation in longitudinal direction. We show that the random χ((2)) modulation offers a continuous set of reciprocal lattice vectors to compensate for the phase mismatch of nonlinear Raman-Nath diffraction in the longitudinal direction, leading to more efficient harmonic generation for a wide range of wavelengths. We also characterize the intensity dependence of nonlinear Raman-Nath diffraction on the degree of randomness of the optical supperlattice.
View Article and Find Full Text PDFRing-down temporal measurements of silicon-on-insulator wire racetrack resonators are performed with 150 fs input pulses using a parametric process in a nonlinear crystal to gate and amplify the weak output pulses. We measure the cavity round trip time and the quality factor of these all-pass filters and find excellent agreement with continuous wave spectroscopic measurements as well as with an analytic model built using numerical solutions for the fully vectorial waveguide modes.
View Article and Find Full Text PDFWe study the second-harmonic generation in quadratic nonlinear media with localized spatial modulation of χ((2)) response. We demonstrate that the emission of Čerenkov second-harmonic takes place only when the fundamental beam illuminates the region of χ((2)) variation. This proves that the sharp modulation of the χ((2)) nonlinearity constitutes a sufficient condition for the emission of Čerenkov second harmonic in bulk materials.
View Article and Find Full Text PDFWe study Čerenkov-type second-harmonic generation in a two-dimensional quasi-periodically poled LiNbO3 crystal. We employ a new geometry of interaction to observe simultaneous emission of multi-directional nonlinear Čerenkov radiation with comparable intensities. This opens a way to control the angle of Čerenkov emission by tailoring the nonlinearity of the material, which is otherwise intrinsically defined by dielectric constants of the medium and their dispersion.
View Article and Find Full Text PDFWe report on the observation of multiple third-harmonic conical waves generated in an annular periodically poled nonlinear photonic crystal. We show that the conical beams are formed as a result of the cascading effect involving two parametric processes that satisfy either the transverse and/or longitudinal phase-patching conditions. This is the first experimental observation of third-harmonic generation based on nonlinear Raman-Nath diffraction.
View Article and Find Full Text PDFWe investigate theoretically the Čerenkov-type second-harmonic generation in two-dimensional bulk nonlinear photonic crystal with longitudinal modulation of the χ((2)) nonlinearity. We show that in this scheme the Čerenkov radiation can be achieved simultaneously at multiple directions with comparable intensities. The angles of emission are controllable by the spatial modulation of the nonlinearity.
View Article and Find Full Text PDFIn this Letter, we experimentally demonstrate the enhancement of the inhomogeneous second harmonic conversion in the opaque region of a GaAs cavity with efficiencies of the order of 0.1% at 612 nm, using 3 ps pump pulses having peak intensities of the order of 10 MW/cm(2). We show that the conversion efficiency of the inhomogeneous, phase-locked second harmonic component is a quadratic function of the cavity factor Q.
View Article and Find Full Text PDFWe have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions.
View Article and Find Full Text PDFWe study theoretically and numerically the second harmonic generation in a nonlinear crystal with random distribution of ferroelectric domains. We show that the specific features of disordered domain structure greatly affect the emission pattern of the generated harmonics. This phenomena can be used to characterize the degree of disorder in nonlinear photonic structures.
View Article and Find Full Text PDFWe study parametric frequency conversion in quadratic nonlinear media with disordered ferroelectric domains. We demonstrate that disorder allows realizing broadband third-harmonic generation via cascading of two second-order quasi-phase matched nonlinear processes. We analyze both spatial and polarization properties of the emitted radiation and find the results in agreement with our theoretical predictions.
View Article and Find Full Text PDFWe theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.
View Article and Find Full Text PDFWe study experimentally the process of the second harmonic generation by two noncollinear beams in quadratic nonlinear crystals with a disordered structure of ferroelectric domains. We show that the second-harmonic radiation is emitted in the form of two cones as well as in a plane representing the cross-correlation of the two fundamental pulses. We demonstrate the implementation of this parametric process for characterisation of femtosecond pulses, enabling the estimation of pulse width, chirp, and front tilt.
View Article and Find Full Text PDF