Publications by authors named "Ropers C"

Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required.

View Article and Find Full Text PDF

The interaction between free electrons and optical fields constitutes a unique platform to investigate ultrafast processes in matter and explore fundamental quantum phenomena. Specifically, optically modulated electrons in ultrafast electron microscopy act as noninvasive probes that push space-time-energy resolution to the picometer-attosecond-microelectronvolt range. Electron energies well above the involved photon energies are commonly used, rendering a low electron-light coupling and, thus, only providing limited access to the wealth of quantum nonlinear phenomena underlying the dynamical response of nanostructures.

View Article and Find Full Text PDF

Interactions among and between electrons and phonons steer the energy flow in photo-excited materials and govern the emergence of correlated phases. The strength of electron-phonon interactions, decay channels of strongly coupled modes and the evolution of three-dimensional order are revealed by electron or X-ray pulses tracking non-equilibrium structural dynamics. Despite such capabilities, the growing relevance of inherently anisotropic two-dimensional materials and functional heterostructures still calls for techniques with monolayer sensitivity and, specifically, access to out-of-plane phonon polarizations.

View Article and Find Full Text PDF

Although radio frequency (RF) technology is routinely employed for controlling high-energy pulses of electrons, corresponding technology has not been developed at beam energies below several kiloelectronvolts. In this work, we demonstrate transverse and longitudinal phase-space manipulation of low-energy electron pulses using RF fields. A millimeter-sized photoelectron gun is combined with synchronized streaking and compression cavities driven at frequencies of and , respectively.

View Article and Find Full Text PDF

The short de Broglie wavelength and strong interaction empower free electrons to probe structures and excitations in materials and biomolecules. Recently, electron-photon interactions have enabled new optical manipulation schemes for electron beams. In this work, we demonstrate the interaction of electrons with nonlinear optical states inside a photonic chip-based microresonator.

View Article and Find Full Text PDF

We present a novel denoising scheme for spectroscopy experiments employing broadband light sources and demonstrate its capabilities using transient absorption measurements with a high-harmonic source. Our scheme relies on measuring the probe spectra before and after interacting with the sample while capturing correlations between spectral components through machine learning approaches. With the present setup we achieve up to a tenfold improvement in noise suppression in XUV transient absorption spectra compared to the conventional pump on/ pump off referencing method.

View Article and Find Full Text PDF

In electron microscopy, detailed insights into nanoscale optical properties of materials are gained by spontaneous inelastic scattering leading to electron-energy loss and cathodoluminescence. Stimulated scattering in the presence of external sample excitation allows for mode- and polarization-selective photon-induced near-field electron microscopy (PINEM). This process imprints a spatial phase profile inherited from the optical fields onto the wave function of the probing electrons.

View Article and Find Full Text PDF

The tunability of materials properties by light promises a wealth of future applications in energy conversion and information technology. Strongly correlated materials such as transition metal dichalcogenides offer optical control of electronic phases, charge ordering and interlayer correlations by photodoping. Here, we find the emergence of a transient hexatic state during the laser-induced transformation between two charge-density wave phases in a thin-film transition metal dichalcogenide, 1T-type tantalum disulfide (1T-TaS).

View Article and Find Full Text PDF

The ability to modulate free electrons with light has emerged as a powerful tool to produce attosecond electron wave packets. However, research has so far aimed at the manipulation of the longitudinal wave function component, while the transverse degrees of freedom have primarily been utilized for spatial rather than temporal shaping. Here, we show that the coherent superposition of parallel light-electron interactions in transversally separate zones allows for a simultaneous spatial and temporal compression of a convergent electron wave function, enabling the formation of sub-Ångström focal spots of attosecond duration.

View Article and Find Full Text PDF

Exploiting vibrational excitation for the dynamic control of material properties is an attractive goal with wide-ranging technological potential. Most metal-to-insulator transitions are mediated by few structural modes and are, thus, ideal candidates for selective driving toward a desired electronic phase. Such targeted navigation within a generally multi-dimensional potential energy landscape requires microscopic insight into the non-equilibrium pathway.

View Article and Find Full Text PDF

Quantum information, communication, and sensing rely on the generation and control of quantum correlations in complementary degrees of freedom. Free electrons coupled to photonics promise novel hybrid quantum technologies, although single-particle correlations and entanglement have yet to be shown. In this work, we demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic chip-based optical microresonator.

View Article and Find Full Text PDF

Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms, trapped ions, quantum dots and defect centres. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization, enabling the observation of free-electron quantum walks, attosecond electron pulses and holographic electromagnetic imaging. Chip-based photonics promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy.

View Article and Find Full Text PDF

Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on the relevant timescales has remained challenging.

View Article and Find Full Text PDF

Strong-field methods in solids enable new strategies for ultrafast nonlinear spectroscopy and provide all-optical insights into the electronic properties of condensed matter in reciprocal and real space. Additionally, solid-state media offers unprecedented possibilities to control high-harmonic generation using modified targets or tailored excitation fields. Here we merge these important points and demonstrate circularly-polarized high-harmonic generation with polarization-matched excitation fields for spectroscopy of chiral electronic properties at surfaces.

View Article and Find Full Text PDF

We theoretically investigate the quantum-coherence properties of the cathodoluminescence (CL) emission produced by a temporally modulated electron beam. Specifically, we consider the quantum-optical correlations of CL produced by electrons that are previously shaped by a laser field. Our main prediction is the presence of phase correlations between the emitted CL field and the electron-modulating laser, even though the emission intensity and spectral profile are independent of the electron state.

View Article and Find Full Text PDF

The interplay between free electrons, light, and matter offers unique prospects for space, time, and energy resolved optical material characterization, structured light generation, and quantum information processing. Here, we study the nanoscale features of spontaneous and stimulated electron-photon interactions mediated by localized surface plasmon resonances at the tips of a gold nanostar using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Supported by numerical electromagnetic boundary-element method (BEM) calculations, we show that the different coupling mechanisms probed by EELS, CL, and PINEM feature the same spatial dependence on the electric field distribution of the tip modes.

View Article and Find Full Text PDF

Spontaneous processes triggered in a sample by free electrons, such as cathodoluminescence, are commonly regarded and detected as stochastic events. Here, we supplement this picture by showing through first-principles theory that light and free-electron pulses can interfere when interacting with a nanostructure, giving rise to a modulation in the spectral distribution of the cathodoluminescence light emission that is strongly dependent on the electron wave function. Specifically, for a temporally focused electron, cathodoluminescence can be canceled upon illumination with a spectrally modulated dimmed laser that is phase-locked relative to the electron density profile.

View Article and Find Full Text PDF

Understanding microscopic processes in materials and devices that can be switched by light requires experimental access to dynamics on nanometer length and femtosecond time scales. Here, we introduce ultrafast dark-field electron microscopy to map the order parameter across a structural phase transition. We use ultrashort laser pulses to locally excite a 1TaS (1-polytype of tantalum disulfide) thin film and image the transient state of the specimen by ultrashort electron pulses.

View Article and Find Full Text PDF
Article Synopsis
  • Topological states of matter are intriguing due to their unique physics and stability, but creating these states quickly is challenging.
  • Researchers demonstrated the rapid emergence of a topological phase with multiple magnetic skyrmions within picoseconds, using real-time soft X-ray scattering after activating with infrared laser.
  • A transient topological fluctuation state, influenced by a specific magnetic field, helps lower the energy barrier for this rapid formation, offering insights into topological transitions and potential for ultrafast switching in various materials.
View Article and Find Full Text PDF

Active optical control over matter is desirable in many scientific disciplines, with prominent examples in all-optical magnetic switching, light-induced metastable or exotic phases of solids and the coherent control of chemical reactions. Typically, these approaches dynamically steer a system towards states or reaction products far from equilibrium. In solids, metal-to-insulator transitions are an important target for optical manipulation, offering ultrafast changes of the electronic and lattice properties.

View Article and Find Full Text PDF

We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1- . Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background.

View Article and Find Full Text PDF

Free-electron beams are versatile probes of microscopic structure and composition, and have revolutionized atomic-scale imaging in several fields, from solid-state physics to structural biology. Over the past decade, the manipulation and interaction of electrons with optical fields have enabled considerable progress in imaging methods, near-field electron acceleration, and four-dimensional microscopy techniques with high temporal and spatial resolution. However, electron beams typically couple only weakly to optical excitations, and emerging applications in electron control and sensing require large enhancements using tailored fields and interactions.

View Article and Find Full Text PDF

Circular dichroism spectroscopy is an essential technique for understanding molecular structure and magnetic materials; however, spatial resolution is limited by the wavelength of light, and sensitivity sufficient for single-molecule spectroscopy is challenging. We demonstrate that electrons can efficiently measure the interaction between circularly polarized light and chiral materials with deeply subwavelength resolution. By scanning a nanometer-sized focused electron beam across an optically excited chiral nanostructure and measuring the electron energy spectrum at each probe position, we produce a high-spatial-resolution map of near-field dichroism.

View Article and Find Full Text PDF

Tip-based photoemission electron sources offer unique properties for ultrafast imaging, diffraction, and spectroscopy experiments with highly coherent few-electron pulses. Extending this approach to increased bunch-charges requires a comprehensive experimental study on Coulomb interactions in nanoscale electron pulses and their impact on beam quality. For a laser-driven Schottky field emitter, we assess the transverse and longitudinal electron pulse properties in an ultrafast transmission electron microscope at a high photoemission current density.

View Article and Find Full Text PDF